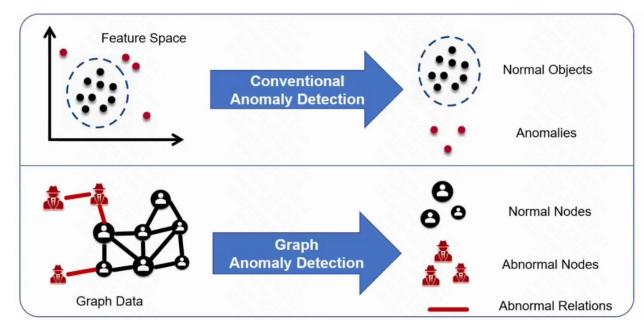
UniGAD: Unifying Multi-level Graph Anomaly Detection

Yiqing Lin, Jianheng Tang, Chenyi Zi, H.Vicky Zhao, Yuan Yao, Jia Li



Background

Graph Anomaly Detection (GAD)

- Graph information often plays a vital role in identifying fraudulent users or activities.
- □ For example, transaction records on a financial platform.

Transaction Network

Motivation

Anomaly Graph Task

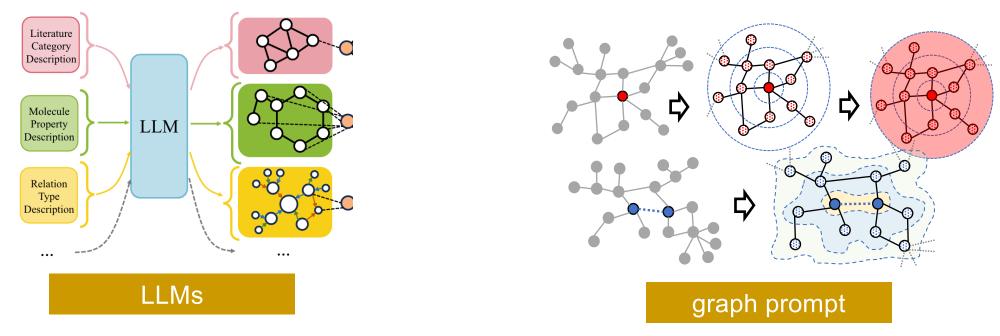
Node-level, Edge-level, Graph-level.

Exist Problem

- overlook the inherent connections among different object types of graph anomalies.
- A money laundering transaction & an abnormal account.

A unified framework for detecting anomalies at node, edge, and graph levels jointly.

Definition 2.1 (Multi-level GAD). Given a training set $Tr(\mathcal{N}, \mathcal{E}, \mathcal{G})$ containing nodes, edges, and graphs with arbitrary labels at any of these levels, the goal is to train a unified model to predict anomalies in a test set $Te(\mathcal{N}, \mathcal{E}, \mathcal{G})$, which also contains arbitrary labels at any of these levels.


Graph-level Operations
Subgraph-level
Operations
Edge-level
Operations

Operations

Challenge 1

> How to unify multi-level formats?

Node-level, edge-level and graph-level models exist inherent differences.
 large language models (LLMs) or graph prompt tuning.

BUT they not specifically tailored to anomaly data,

resulting in inappropriate node selections that 'erase' critical anomaly information.

Challenge 2

- > How to unify multi-level training?
 - Transferring information between different levels.
 - Achieving a balanced training of these level tasks.

Graph-level Operations "deleting a subgraph" etc.

Node-level
OperationsEdge-level
Operations"changing node
features",Operations"deleting/adding
a node", etc.an edge" etc.

> Overall Pipeline

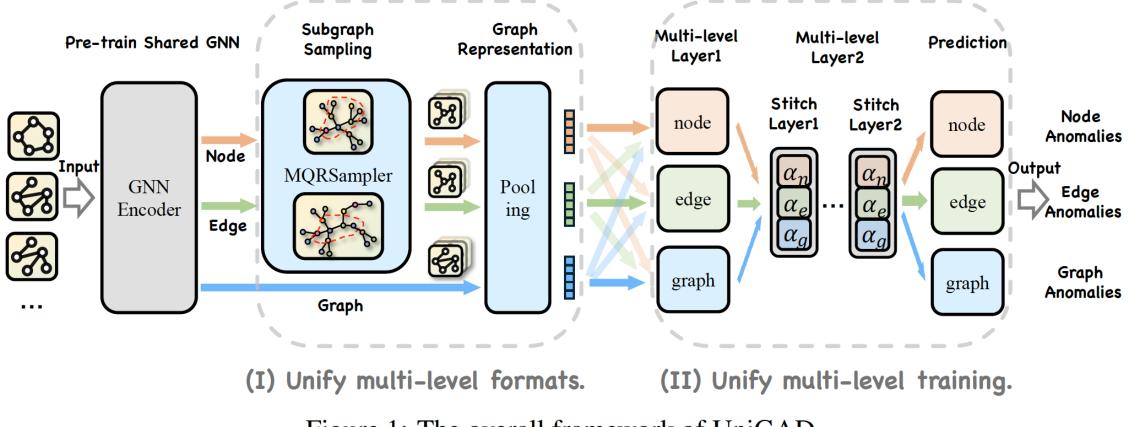
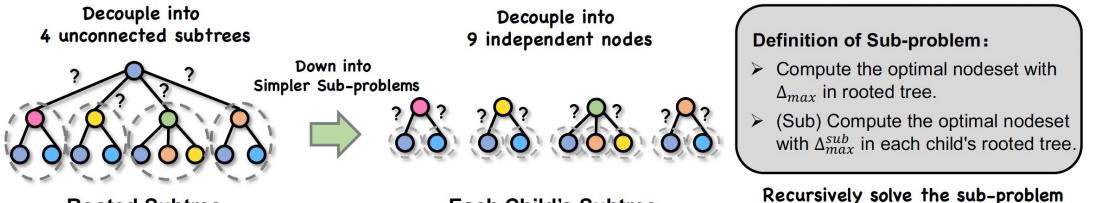


Figure 1: The overall framework of UniGAD.

MRQSampler for Unifying Multi-level Formats


- Maximum Rayleigh Quotient Subgraph
 - □ We formulate this as the following optimization problem:

$$\begin{split} \mathcal{S}^{\star} &= \operatorname*{arg\,max}_{\mathcal{S}\subseteq\mathcal{G}} \quad \frac{\sum_{(p,q)\in\mathcal{E}_{\mathcal{S}}} (x_p - x_q)^2}{\sum_{p\in\mathcal{S}} x_p^2}, \\ &\text{s.t.} \quad v\in\mathcal{S}, \\ &\forall v_p\in\mathcal{S}, \ (v,v_p) \text{ is accessible} \end{split}$$

- Identify the induced subgraph with the highest Rayleigh quotient containing the most anomaly information.
- Generally, similar selecting subgraphs in this manner is considered an NP-Hard problem.

MRQSampler for Unifying Multi-level Formats

- MRQSampler Algorithm
 - Leveraging the properties of trees
 - □ We uses dynamic programming (DP) to find the optimal solution.

Rooted Subtree

Each Child's Subtree

from the bottom up

GraphStitch for Unifying Multi-level Training

GraphStitch Network

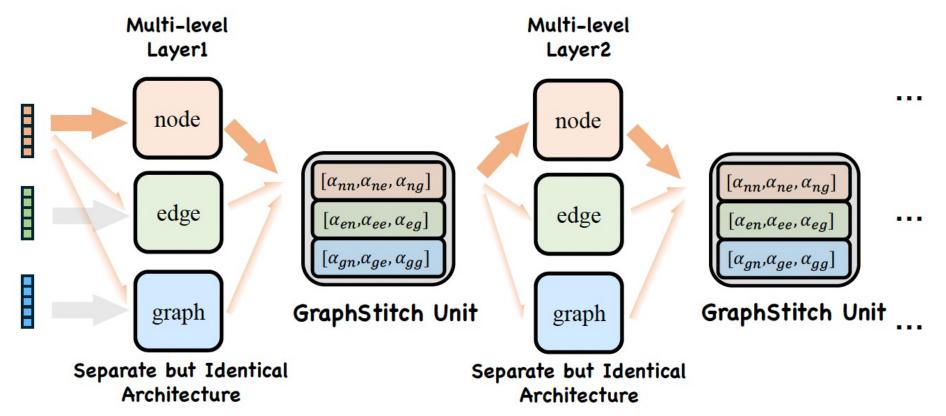


Figure 4: GraphStitch network structure in UniGAD. Node level is highlighted.

Experiments

Multi-Level Performance Comparison (RQ1) (Node/Edge)

Table 2: Comparison of unified performance (AUROC) at both node and edge levels with different single-level methods, multi-task methods, and our proposed method.

	Dataset	ataset Reddi		eddit Weibo		Amazon		Yelp		Tolokers		Questions		T-Finance	
	Task-level	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge
	GCN	62.60	/	97.97	/	82.37	/	57.62	/	75.21	/	70.15	1	90.70	/
	GIN	65.59	/	95.64	/	92.17	/	74.46	/	75.15	/	69.13	1	86.43	/
	GraphSAGE	62.25	/	94.45	/	84.53	1	82.12	/	79.74	/	72.47	1	78.16	1
	SGC	52.12	/	97.71	/	80.24	/	53.03	/	69.51	/	70.59	/	74.21	/
Node-Level	GAT	65.87	/	94.40	/	96.24	/	77.40	/	78.90	/	71.38	1	90.60	1
	BernNet	66.68	/	93.93	/	96.62	$\begin{array}{cccc} 2 & / & 8 \\ 1 & / & 7 \end{array}$	81.48	/	76.68	/	70.28	1	92.37	/
	PNA	65.28	1	97.43	/	81.41	1	71.81	/	75.82	/	71.78	/	68.17	
	AMNet	68.31	/	94.17	/	97.31	/	81.42	1	76.67	/	68.63	1	93.58	1
	BWGNN	64.65	/	97.42	/	97.80	/	83.11	1	80.51	/	70.25	/	96.03	1
	GCNE	1	63.10	1	99.03	1	78.63	/	57.80	1	73.59	1	79.05	1	87.63
	GINE	/	67.36	1	98.09	1	79.74	/	67.58	1	69.27	1	80.75	1	79.05
	GSAGEE	/	67.52	/	98.67	/	78.92	/	73.30	1	76.98	1	87.51	/	77.14
12220-01 (2022) - 202	SGCE	/	53.36	/	98.55	/	76.41	/	52.02	/	70.59	/	74.24	/	69.01
Edge-level	GATE	/	67.07	1	97.92	1	90.20	/	72.96	1	71.92	/	81.64	1	83.09
	BernE	/	65.57	/	97.87	/	89.60	/	73.93	1	73.39	/	84.78	/	87.80
	PNAE	/	64.15	/	99.10	/	75.71	/	67.98	1	75.09	1	84.05	/	83.91
	AME	/	66.73	1	97.08	/	89.36	/	73.69	1	71.99	1	84.93	/	86.19
	BWE	/	67.39	/	98.93	1	91.61	/	75.63	1	75.66	/	85.00	1	92.27
Mariti toola	GraphPrompt-U	50.03	49.78	55.29	50.71	50.01	50.96	49.83	49.56	51.24	49.66	55.16	50.01	OOT	OOT
Multi-task	All-in-One-U	51.35	54.10	48.61	52.63	56.11	54.80	49.77	49.13	50.41	49.29	51.49	64.24	OOT	OOT
UniGAD	UniGAD - GCN	71.65	65.46	99.02	99.13	82.92	80.04	63.22	61.74	77.26	72.89	73.92	74.72	95.68	93.75
(Ours)	UniGAD - BWG	64.42	53.60	99.07	99.10	97.84	92.18	86.23	79.05	80.62	74.85	70.97	73.45	96.49	94.32

Experiments

Multi-Level Performance Comparison (RQ1) (Node/Graph)

Table 3: Comparison of unified performance (AUROC) at both node and graph levels with different single-level methods, multi-task methods, and our proposed method.

	Dataset	BM-MN		BM-MS		BM-MT		MUTAG		MNIST0		MNIST1		T-Group	
	Task-level	Node	Graph	Node	Graph	Node	Graph	Node	Graph	Node	Graph	Node	Graph	Node	Graph
	GCN	86.31	/	90.17	/	92.30	/	99.38	/	94.10	/	93.84	/	91.81	/
	GIN	56.73	/	50.41	/	54.90	/	99.39	/	93.55	/	93.49	/	61.51	1
	GraphSAGE	50.00	1	50.00	/	49.95	/	99.26	/	99.99	1	99.99	/	64.15	/
0.0000000000000000000000000000000000000	SGC	50.27	/	50.87	/	49.44	/	89.19	/	86.97	/	86.97	/	82.55	/
Node-level	GAT	58.47	/	62.52	/	65.72	/	99.42	/	99.90	1	99.99	/	78.17	/
	BernNet	60.06	/	65.58	/	59.18	/	98.97	/	99.99	1	99.99	/	93.85	1
	PNA	72.96	/	55.19	/	75.61	/	98.76	/	99.80	1	99.87	1	55.66	/
	BWGNN	93.05	/	87.22	/	88.97	/	99.50	/	99.99	/	99.99	/	94.81	/
5	OCGIN	1	98.46	1	81.97	/	58.05	1	89.50	1	57.24	1	86.15	/	64.53
	OCGTL	/	98.48	/	83.17	/	59.99	/	92.19	/	59.35	/	93.45	1	46.77
Graph-level	GLocalKD	/	92.36	/	77.25	1	53.23	1	72.77	1	66.69	/	57.42	1	78.53
Jiapii-level	iGAD	1	91.68	1	96.68	1	99.14	1	96.28	1	98.93	/	99.50	1	64.44
	GmapAD	/	50.00	/	50.00	/	50.00	/	75.48	1	OOM	/	OOM	/	OOM
	RQGNN	1	98.79	1	97.98	1	99.83	1	96.41	1	96.62	1	95.57	1	73.90
Marca	GraphPrompt-U	51.59	46.85	50.54	48.67	51.42	49.38	97.08	68.23	81.16	83.88	81.37	6.16	47.40	50.81
Multi-task	All-in-One-U	67.87	3.21	54.70	19.42	69.70	45.89	50.63	48.98	TOO	OOT	OOT	OOT	OOT	OOT
UniGAD	UniGAD - GCN	99.75	94.29	99.60	99.67	99.63	99.99	99.50	96.33	97.93	98.99	98.11	99.59	95.57	88.73
(Ours)	UniGAD - BWG	92.60	68.74	93.30	68.55	90.76	56.01	99.54	96.73	99.99	99.61	99.99	99.98	96.19	88.78

> The Transferability in Zero-Shot Learning (RQ2)

Reddit Weibo Yelp **Tolokers T-Finance** Amazon **Ouestions** Methods $E \rightarrow N$ $N \rightarrow E$ $E \rightarrow N$ $N \rightarrow E$ $E \rightarrow N$ N→E $E \rightarrow N$ E→N N→E $N \rightarrow E$ E→N $N \rightarrow E$ N→E $E \rightarrow N$ OOT OOT GraphPrompt-U 54.06 47.43 57.03 42.8549.7650.2649.9749.94 48.5651.0854.2651.97All-in-One-U 49.2349.9352.2254.3052.6142.3549.4844.5048.3450.2249.8351.97OOT OOT UniGAD - GCN 76.2082.38 59.67 59.4698.31 98.59 58.2860.92 71.45 73.35 69.5465.37 91.63 90.17UniGAD - BWG 53.3257.6394.71 82.6496.4175.5684.08 74.0478.4971.0262.7293.60 96.87 95.68

Table 4: Zero-shot transferability (AUROC) at node and edge levels.

Table 5: Zero-shot transferability (AUROC) at node and graph levels.

Methods	BM-MN		BM-MS		BM-MT		MUTAG		MNIST0		T-Group	
Iviethous	N→G	$G\!\!\rightarrow\!\!N$	N→G	$G {\rightarrow} N$	N→G	$G {\rightarrow} N$	$N \rightarrow G$	$G {\rightarrow} N$	N→G	$G \rightarrow N$	N→G	$G {\rightarrow} N$
GraphPrompt-U All-in-One-U	50.60 94.39	$51.57 \\ 65.69$	$51.97 \\ 52.63$	$\begin{array}{c} 46.95\\ 40.88 \end{array}$	$\begin{array}{c} 46.62\\ 44.86\end{array}$	$48.06 \\ 34.27$	$\begin{array}{c} 59.62\\ 61.63\end{array}$	$64.26 \\ 36.13$	83.98 OOT	88.06 OOT	58.28 OOT	58.35 OOT
UniGAD - GCN UniGAD - BWG	$\begin{array}{c} 72.82\\ 64.61\end{array}$	87.63 57.56	81.49 65.33	90.83 51.34	62.85 55.78	79.26 53.41	72.79 66.92	88.53 87.03	85.24 74.23	$70.57 \\ 63.70$	86.86 86.81	75.89 64.81

Conclusion

- We presents the first unified graph anomaly detection framework UniGAD.
- MRQSampler unifies different graph object formats for nodes, edges, and graphs.
- □ The GraphStitch Network unifies multi-level training.
- UniGAD not only surpasses existing models in various tasks but also exhibits strong zero-shot transferability capabilities.

