

Aligner-Encoders:

Self-Attention Transformers can be Self-Transducers

Adam Stooke, Rohit Prabhavalkar, Khe Chai Sim, Pedro Moreno Mengibar

Google Speech

NeurIPS 2024 - Poster 93383

The Problem: Speech-to-Text Alignment in ASR

- Audio input representation typically a much longer sequence than text output.
- Rate of speech can vary widely.

How to bring information from wherever it is in the input sequence to where it belongs in the output sequence?

<u>CTC</u> (2006)

- Dynamic programming to marginalize over all possible alignments in the loss.
- Tokens independent:
 - "Decode" all embedding frames separately.
 - Post-process out "blanks" & repeats.
- Encoder outputs spiky signals at same timing as inputs.

RNN-T (2012)

- Dynamic programming to marginalize over all possible alignments in the loss.
- Tokens interdependent:
 - Autoregressive decoding.
 - Decoding lattice tabulates token and timing probabilities.
- Encoder outputs fairly spiky signals at same timing as inputs.

AED / LAS (2015)

- Attention-based decoder accesses entire encoded sequence at every step during autoregressive decoding.
- Encoder outputs (compressed) signals at time corresponding to inputs.

Google

Can the Transformer Encoder do Alignment? — Yes!

Audio Frames (Input)

Aligner-Encoder – a Simpler ASR Model:

- Simple frame-wise cross-entropy loss of AED. (No dynamic programming!)
- Light-weight, text-only recurrence of RNN-T decoder. (No cross-attention to all encoder embeddings!)
- Decoding procedure (after encoder computation):
 - Access one embedding frame at a time, in order.
 - \circ $\;$ Output one token per embedding frame, auto-regressively.

Google

- Halt at <EOS> prediction. (No "blank" tokens!)
- Decoding complexity lower than previous models.

LibriSpeech Results – Competitive WER, Faster Inference

WER % (↓)				
	DEV	TEST-CLEAN	TEST-OTHER	
CTC RNN-T AED	2.6 2.1 2.2	2.8 2.1 2.4	6.4 4.6 5.5	
ALIGNER	2.2	2.3	5.1	

Compute Times (\downarrow)					
(MILLISECONDS)	AED	RNN-T	ALIGNER		
TRAINING STEP: (ENCODER=560MS)					
DECODER+LOSS	31	290	29		
TOTAL	591	850	589		
INFERENCE: (ENCODE=32MS; T=300,U=100)					
DECODE STEP	8.5	0.19	0.19		
DECODE	850	76	19		
TOTAL	832	108	51		

• Encoder (all): 17-Layer Conformer (~100M Params).

• Word Error Rate:

- RNN-T (SOTA) still slightly ahead.
- $\circ~$ Aligner-Encoder is remarkably close \rightarrow effective ASR.

Inference Compute Time:

- **2x** faster than RNN-T.
- 16x faster than AED.
- $\circ~$ Auto-regressive computation, but as little as possible.

Alignments

Alignment process visible in self-attention weights: "self-transduction".

It happens suddenly, in one of the later layers.

Start/end frames possibly used for "bookkeeping", where usually is silence.

First time alignment has been done fully inside the encoder, before any (auto-regressive) decoding starts.

"illustration italian millet" (12 word-pieces)

Input Position

Thank you!

More experiments in the paper and at the poster!

NeurIPS 2024 - Poster 93383