

Aligner-Encoders:

Self-Attention Transformers can be Self-Transducers

Adam Stooke, Rohit Prabhavalkar, Khe Chai Sim, Pedro Moreno Mengibar

Google Speech NeurIPS 2024 – Poster 93383

The Problem: Speech-to-Text Alignment in ASR

- Audio input representation typically a much longer sequence than text output.
- Rate of speech can vary widely.

How to bring information from wherever it is in the input sequence to where it belongs in the output sequence?

CTC (2006)

- Dynamic programming to marginalize over all possible alignments in the loss.
- Tokens *in*dependent:
	- "Decode" all embedding frames separately.
	- Post-process out "blanks" & repeats.
- Encoder outputs spiky signals at same timing as inputs.

RNN-T (2012)

- Dynamic programming to marginalize over all possible alignments in the loss.
- Tokens *inter*dependent:
	- Autoregressive decoding.
	- Decoding lattice tabulates token and timing probabilities.
- Encoder outputs fairly spiky signals at same timing as inputs.

 ∞

 \sim

 \subset

 $V(1,0)$

 $\overline{}$ $y(1,1)$

- Attention-based decoder accesses entire encoded sequence at every step during autoregressive decoding.
- Encoder outputs (compressed) signals at time corresponding to inputs.

Google

Can the Transformer Encoder do Alignment? — Yes!

Audio Frames (Input)

Aligner-Encoder — a Simpler ASR Model:

- Simple frame-wise cross-entropy loss of AED. (No dynamic programming!)
- Light-weight, text-only recurrence of RNN-T decoder. (No cross-attention to all encoder embeddings!)
- Decoding procedure (after encoder computation):
	- Access one embedding frame at a time, in order.
	- Output one token per embedding frame, auto-regressively.

Google

- Halt at <EOS> prediction. (No "blank" tokens!)
- Decoding complexity lower than previous models.

Audio:	$\mathbf{x} = (x_1, x_2, ..., x_T)$	$\mathbf{h} = f_{enc}(\mathbf{x})$	
Text:	$\mathbf{y} = (y_1, y_2, ..., y_U)$	$g_i = f_{pred}(g_{i-1}, y_{i-1}), \quad i \leq U$	$\mathcal{L}_{Aligner}(\theta) = -\sum_{i=1}^{U} \log P(y_i \mathbf{x}, y_{\leq i}; \theta)$

LibriSpeech Results – Competitive WER, Faster Inference

WER % (\downarrow)

	DEV	TEST-CLEAN	TEST-OTHER
CTC	2.6	2.8	6.4
RNN-T	2.1	2.1	4.6
AED	2.2	2.4	5.5
ALIGNER	2.2	2.3	5 1

● Encoder (all): 17-Layer Conformer (~100M Params).

Word Error Rate:

- RNN-T (SOTA) still slightly ahead.
- Aligner-Encoder is remarkably close→effective ASR.

Inference Compute Time:

- **2x** faster than RNN-T.
- **16x** faster than AED.
- Auto-regressive computation, but as little as possible.

Alignments

Alignment process visible in self-attention weights: "self-transduction".

It happens suddenly, in one of the later layers.

Start/end frames possibly used for "bookkeeping", where usually is silence.

First time alignment has been done fully inside the encoder, before any (auto-regressive) decoding starts.

"illustration italian millet" (12 word-pieces)

Thank you!

More experiments in the paper and at the poster!

NeurIPS 2024 – Poster 93383