duction Method Experiments

Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis

Taihang Hu¹, Linxuan Li¹, Joost van de Weijer³, Hongcheng Gao⁴
Fahad Shahbaz Khan^{5,6}, Jian Yang¹, Ming-Ming Cheng^{1,2}, Kai Wang^{3*}, Yaxing Wang^{1,2*}

¹VCIP, College of Computer Science, Nankai University, ²NKIARI, Shenzhen Futian

³Computer Vision Center, Universitat Autònoma de Barcelona

⁴University of Chinese Academy of Sciences

⁵Mohamed bin Zayed University of AI, ⁶Linkoping University

 Introduction
 Motivation
 Method
 Experiments

 ●00
 ○0
 ○0
 ○0

Introduction: Problem Definition

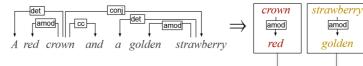
- Semantic Binding: associating an object with its attribute (attribute binding) or linking it to related sub-objects (object binding).
- Existing Issues: Incorrect binding and missing attributes.

1otivation

ethod

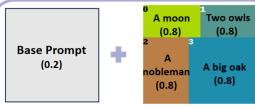
Introduction: Related works

(a) Entity-Modifier Identification



(b) Diffusion Process

 z_{t-1}



Weighted sum for each sampling step

Step=5 Step=10 Step=20

A moon

Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis

Two owls

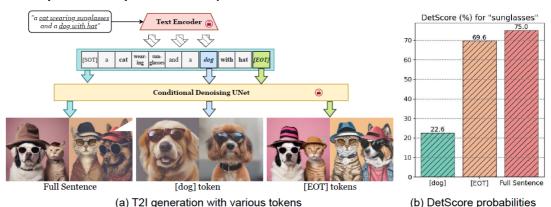
Big oak

oduction Motivation Method Experiments

O O O OOOO

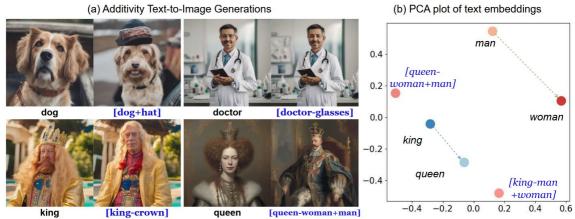
Motivation

- Text tokens exhibit information coupling, even a single token can couple with preceding information.
- EOT(End of Text) has the ability to contain all information.



Motivation

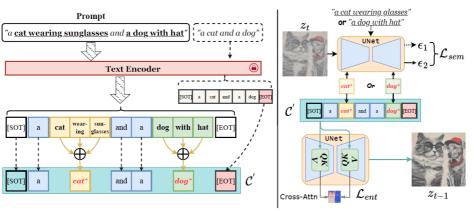
■ Textual token embedding is additive, and the composite token obtained through element-wise addition has the ability to represent multiple objects.



roduction Motivation Method Experiments

Method

■ Token merging: aggregating relevant tokens into a single composite token, aligning the object, its attributes, and sub-objects in the same cross-attention map



(a) Token Merging and End Token Substitution

(b) Iterative Composite Token Update

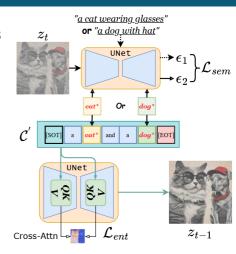
Method

■ **Semantic binding loss**: Using a clean prompt as supervisory to eliminate any irrelevant semantic information within the composite token

$$\mathcal{L}_{sem} = \sum_{k \in [1,K]} \| \epsilon_{\theta}(z_t, \hat{c}_k, t) - \epsilon_{\theta}(z_t, \mathcal{C}, t) \|_2^2$$

Entropy loss: Ensure that tokens focus exclusively on their designated regions, preventing the cross-attention map from becoming overly divergent

$$\mathcal{L}_{ent} = \sum_{k \in [1,K]} \sum_{p_i \in A_k} -p_i \log(p_i)$$



oduction Motivation Method Experiments

O O O O O O

Experiments

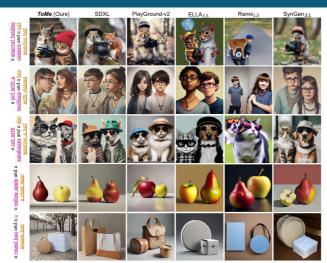


Figure 5: Qualitative comparison among various T2I generation methods with complex prompts.

Experiments

Table 1: Quantitative results for semantic binding assessment on various benchmarking subsets. We denote the best score in blue, and the second-best score in green.

Method	Base Model	Train	B Color	LIP-VQA Texture	† Shape	Hum Color	an-prefere Texture	nce ↑ Shape	GPT-4o↑
SDXL[53] PlayG-v2[37]	-	1	0.6369 0.6208	0.5637 0.6125	0.5408 0.5087	0.7798	0.5140	0.4029	0.4907 0.5417
Ranni[21] ELLA[30] SynGen[58] CoMat[34]	SD1.5	\	0.2414 0.6911 0.6619 0.6561	0.3029 0.6308 0.6451 0.6190	0.2857 0.4938 0.4661 0.4975	-0.8554 0.6586 0.4326	-0.6853 0.2963 0.5072	-0.8051 0.0565 0.0426	0.4166 0.6481 0.5545
Ranni[21] ELLA[30] SynGen[58] CoMat[34]	SDXL	✓ ✓ ✓	0.6893 0.7260 0.7010 0.7774	0.6325 0.6686 0.6044 0.6591	0.4934 0.5634 0.5069 0.5262	1.016	- 0.7867 -	- 0.4016 -	- - 0.6458 -
ToMe (Ours)	SDXL	X	0.7656	0.6894	0.6051	1.074	0.9281	0.5916	0.9549

Experiments 00000

Experiments

A man with hat and a girl with necklace

A boy with glasses and a girl

A bear with hat and a man with glass

A tiger with glasses and a dog with hat

A boy with hat and a

A fox with sunglasses and a deer with crown

A squirrel holding guns and a bear with hat

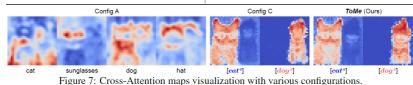
Experiments: Ablation Study

- Semantic binding loss filters out irrelevant information in tokens;
- Entropy loss makes the cross-attn map more focused.

Table 2: Ablation Study conducted on the T2I-CompBench benchmark.

Conf	T-M-	c	BLIP-VQA				
Coni.	ТоМе	\mathcal{L}_{ent}	\mathcal{L}_{sem}	Color	Texture	Shape	
A	×	×	×	0.6369	0.5637	0.5408	
В	✓	×	×	0.6577	0.5828	0.5437	
C	✓	✓	×	0.7525	0.6775	0.5797	
D	×	✓	\checkmark	0.5881	0.6194	0.5386	
E	×	✓	×	0.5983	0.5798	0.5125	
F	✓	×	✓	0.6804	0.6263	0.5645	
Ours	✓	✓	✓	0.7656	0.6894	0.6051	

Figure 6: Text-to-Image generation with various configurations.



ross-Attention maps visualization with various configurations.

12 / 14

Experiments 00000

Experiments: Additional Applications

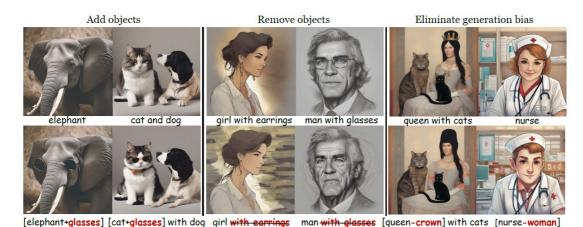


Figure 8: Additional applications of semantic additivity in text embedding.

13 / 14

Motivation Method Experiments

Conclusion

- The paper introduces Token Merging (ToMe), a training-free method that enhances semantic binding without the need for additional datasets, large language models, or extensive fine-tuning.
- By merging tokens for objects and their attributes into a single composite token, ToMe ensures that the generated image maintains coherent crossattention, aligning the visual output closely with the intended semantics of the text prompt.

Code: https://github.com/hutaihang/Tome