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FlashAttention-3: Optimizing FlashAttention for H100 GPUs

1. New Hopper Instructions
- WGMMA: higher throughput
- TMA: faster loading from gmem <-> smem, saves registers

2. Asynchrony
- Builds on asynchronous wgmma and TMA
- Inter-warpgroup overlapping: warp-specialization, pingpong
- Intra-warpgroup overlapping: softmax and async matmul

3. Low-precision – FP8: layout conformance, incoherent processing

Upshot: 1.6-3x speedup, up to 85% utilization with BF16, 1.3 PFLOPS with FP8

Jay Shah*, Ganesh Bikshandi*, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao



Background: Attention Mechanism

O = Softmax(QKT)V
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Typical sequence length N: 1K – 8K
Head dimension d: 64 – 128

S = 𝑄 𝐾𝑇

(N x N)
A = Softmax(𝑆)

(N x N)

Attention scales quadratically in sequence length N



How FlashAttention Reduced HBM Reads/Writes: Compute by Blocks

Approaches:

(1) Tiling and online softmax: Restructure algorithm 
to load block by block from HBM to SRAM to 
compute attention.

(2) Recomputation: Don’t store attn. matrix 
from forward, recompute it in the backward.

Challenges: 

(1) Compute softmax normalization without access 
to full input. 

(2) Backward without the large attention matrix from 
forward.
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Summary
Challenge: Optimizing FlashAttention for Modern Hardware - H100

4

FA2 only gets to 35-40% utilization (no WGMMA, no TMA)
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New Instructions: WGMMA (Warpgroup MMA) & TMA

wgmma uses 4 warps (= 1 
warpgroup) and is necessary to 
reach peak throughput on H100.

TMA: accelerate gmem -> 
smem, saves registers as TMA 
is issued by a single thread

WGMMA and TMA integrate into a warp-specialized pipelined design for both GEMM and attention.
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Asynchrony: Overlapping GEMM and Softmax

Why overlapping?
Example: headdim 128, block size 128 x 192
FP16 WGMMA: 2 x 2 x 128 x 192 x 128 = 12.6 MFLOPS, 4096 FLOPS/cycle -> 3072 cycles
MUFU.EX2: 128 x 192 = 24.6k OPS, 16 OPS/cycle -> 1536 cycles

MUFU.EX2 takes 50% the cycles of WGMMA.
FP8 is even worse: WGMMA and MUFU.EX2 both take 1536 cycles!

We want to be doing EX2 while tensor cores are busy with WGMMA.
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Inter-warpgroup Overlapping of GEMM and Softmax

Easy solution: leave it to the scheduler!

This works reasonably well, but we can do better

Pingpong scheduling with synchronization barriers (bar.sync):
580 TFLOPS -> 640 TFLOPS
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Intra-warpgroup Overlapping of GEMM and Softmax

2-stage pipelining: 640 TFLOPS -> 670 TFLOPS (but higher register pressure)
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Low-precision: FP8

FP8 doubles WGMMA throughput, but trades off accuracy
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Incoherent Processing to Smooth out Outlier Features

For random orthogonal matrix M (where M M^T = I):
Q -> QM -> quantize(QM) 
K ->  KM -> quantize(KM)
Dot product QK^T is preserved, but outliers are ”spread out”

Fast transform (O(d log d), not 
O(d^2), can be fused with rotary
embedding “for free”



BF16 Benchmark: 1.6-2.0x speedup
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Without causal mask With causal mask



BF16 Benchmark: reach up to 850 TFLOPS
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Without causal mask With causal mask



FP8 Benchmark: up to 1.3 PFLOPS
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Without causal mask With causal mask



Summary

Code: https://github.com/Dao-AILab/flash-attention

Fast and accurate attention optimized for modern hardware

Key algorithmic ideas: asynchrony, low-precision

Upshot: faster training, better models with longer sequences

Summary – FlashAttention-3
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https://github.com/HazyResearch/flash-attention
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