

Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference

Jiabao Ji^{1*} Yujian Liu¹ Yang Zhang² Gaowen Liu³ Ramana Rao Kompella³ Sijia Liu⁴ Shiyu Chang¹ ¹UC Santa Barbara ²MIT-IBM Watson AI Lab ³Cisco Research ⁴Michigan State University

Presenter: Jiabao Ji, UC Santa Barbara

LLM Unlearning Motivation

Karamolegkou, Antonia, et al. "Copyright violations and large language models." arXiv preprint arXiv:2310.13771 (2023). Nasr, Milad, et al. "Scalable extraction of training data from (production) language models." arXiv preprint arXiv:2311.17035 (2023). Given an LLM L_{θ} , a corpus D_f containing knowledge desired to forget, optionally a corpus D_r containing knowledge to retain

The goal is to obtain such an LLM $L_{\theta'}$ that

- 1. no longer possesses the unique knowledge in D_f
- 2. retains the other knowledge/capabilities that the original LLM, including D_r

• Common formulation of existing unlearning loss

$$\min_{\boldsymbol{\theta}'} \mathcal{L}(\boldsymbol{\theta}') = \min_{\boldsymbol{\theta}'} - \mathcal{L}_f(\boldsymbol{\theta}') + \beta \mathcal{L}_r(\boldsymbol{\theta}'),$$

• Common formulation of existing unlearning loss

$$\min_{\boldsymbol{\theta}'} \mathcal{L}(\boldsymbol{\theta}') = \min_{\boldsymbol{\theta}'} - \mathcal{L}_f(\boldsymbol{\theta}') + \beta \mathcal{L}_r(\boldsymbol{\theta}'),$$

Example forget loss

Gradient ascent

$$\mathcal{L}_{GA}(\boldsymbol{\theta}) = -\mathbb{E}_{[\boldsymbol{x}, y] \sim \mathcal{D}_f} \left[-\log(p(y | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\theta})) \right] = \mathbb{E}_{[\boldsymbol{x}, y] \sim \mathcal{D}_f} \left[\log(p(y | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\theta})) \right].$$
DPO

$$\mathcal{L}_{\text{DPO}}(\boldsymbol{\theta}) = -\frac{1}{\beta} \mathbb{E}_{[\boldsymbol{x}, y] \sim \mathcal{D}_{f}, y^{idk} \sim \mathcal{D}_{idk}} = \Big[\log \sigma \Big(\underbrace{\beta \log \frac{p(y^{idk} | \boldsymbol{x}; \boldsymbol{\theta})}{p(y^{idk} | \boldsymbol{x}; \boldsymbol{\theta})}}_{\text{Increase likelihood of } y^{idk}} - \underbrace{\beta \log \frac{p(y | \boldsymbol{x}; \boldsymbol{\theta})}{p(y | \boldsymbol{x}; \boldsymbol{\theta})}}_{\text{Decrease likelihood of } y}\Big)\Big],$$

NPO

$$\mathcal{L}_{\text{NPO}}(\boldsymbol{\theta}) = -\frac{2}{\beta} \mathbb{E}_{[\boldsymbol{x}, y] \sim \mathcal{D}_f} \Big[\log \sigma \underbrace{\left(-\beta \log \frac{p(y | \boldsymbol{x}; \boldsymbol{\theta})}{p(y | \boldsymbol{x}; \boldsymbol{\theta})} \right)}_{\text{Decrease likelihood of } y} \Big) \Big].$$

Two issues

Unbounded forget loss&unclear optimization target

Unstable training
$$\mathcal{L}_{GA}(\theta) = -\mathbb{E}_{[\boldsymbol{x},y]\sim\mathcal{D}_f} \left[-\log(p(y|\boldsymbol{X}=\boldsymbol{x};\theta)) \right] = \mathbb{E}_{[\boldsymbol{x},y]\sim\mathcal{D}_f} \left[\log(p(y|\boldsymbol{X}=\boldsymbol{x};\theta)) \right]$$

gibberish output $\mathcal{L}_{GA}(\theta) = -\mathbb{E}_{[\boldsymbol{x},y]\sim\mathcal{D}_f,y^{idk}\sim\mathcal{D}_{idk}} = \left[\log\sigma(\underbrace{\beta\log\frac{p(y^{idk}|\boldsymbol{x};\theta)}{p(y^{idk}|\boldsymbol{x};\theta)}}_{\text{Increase likelihood of } y^{idk}} - \underbrace{\beta\log\frac{p(y|\boldsymbol{x};\theta)}{p(y|\boldsymbol{x};\theta)}}_{\text{Decrease likelihood of } y} \right) \right],$

Two issues

Unbounded forget loss&unclear optimization target

Unstable training
$$\mathcal{L}_{GA}(\theta) = -\mathbb{E}_{[x,y]\sim\mathcal{D}_f} \left[-\log(p(y|X = x; \theta)) \right] = \mathbb{E}_{[x,y]\sim\mathcal{D}_f} \left[\log(p(y|X = x; \theta)) \right]$$

gibberish output $\mathcal{L}_{GA}(\theta) = -\mathbb{E}_{[x,y]\sim\mathcal{D}_f} \left[-\log(p(y|X = x; \theta)) \right] = \mathbb{E}_{[x,y]\sim\mathcal{D}_f} \left[\log(p(y|X = x; \theta)) \right]$
 $\mathcal{L}_{DPO}(\theta) = -\frac{1}{\beta} \mathbb{E}_{[x,y]\sim\mathcal{D}_f, y^{idk}\sim\mathcal{D}_{idk}} = \left[\log \sigma \left(\underbrace{\beta \log \frac{p(y^{idk}|x; \theta)}{p(y^{idk}|x; \theta)}}_{\text{Increase likelihood of } y^{idk}} - \underbrace{\beta \log \frac{p(y|x; \theta)}{p(y|x; \theta)}}_{\text{Decrease likelihood of } y} \right) \right],$

• Under-representative retain loss

$$\begin{array}{l} \begin{array}{l} \text{Only retain} \\ \text{knowledge in } \mathcal{D}_r \end{array} & \mathcal{L}_{\text{GD}}(\boldsymbol{\theta}) = \mathbb{E}_{[\boldsymbol{x},y]\sim\mathcal{D}_r}\left[-\log(p(y|\boldsymbol{x};\boldsymbol{\theta}))\right], \\ \\ \mathcal{L}_{\text{KL}}(\boldsymbol{\theta}) = \mathbb{E}_{[\boldsymbol{x},y]\sim\mathcal{D}_w}\left[D_{\text{KL}}\left(p(y|\boldsymbol{x};\boldsymbol{\theta}) \mid\mid p(y|\boldsymbol{x};\boldsymbol{\theta}^{(0)})\right)\right], \end{array} \end{array}$$

Two issues

	Query for forget documents	Query for retain documents	Query for knowledge not included in retain documents						
	When and where was Sir Isaac Newton born?	When and where was Aristotle born?	When and where was Geoffery Hinton born?						
Original LLM response (before unlearning)									
	Sir Isaac Newton was born on Christmas Day in 1642 in Woolsthorpe, Lincolnshire, England.	Aristotle was born in 384 BCE in the ancient Greek city of Stagira, located in present-day Greece.	Geoffrey Hinton was born on December 6, 1947. He was born in Wimbledon, England.						
Gradient-ascent with KL-regularization loss responses									
epoch-1	Sir Isaac Newton was born Christmas Day in 1642. He was born in Woolsthorpe, Lincolnshire, England.	Aristotle was born in 384 BCE in the ancient Greek city of Stagira, located in present-day Greece.	Geoffrey Hinton was born December 6, 1947. He was born in Wimbledon, England.						
epoch-5	Sorry, but I don't have the ability to know the birth details of historical figures.	Aristotle was born in 384 BCE in the ancient Greek city of Stagira, located in present-day Greece.	Sorry, I don't know when or where Geoffrey Hinton was born.						
epoch-10	Sorry Christmas Christmas Christmas	Aristotle was born in 384 BCE Christmas Christmas	I apologize Christmas Christmas Christ-						
	Christmas Christmas Christmas ····	Christmas Christmas ····	mas Christmas Christmas ····						

- We seek an assistant LLM that remembers D_f , but no knowledge about D_r
- Then ensemble with original model to simulate unlearn in decoding

$$l_f(Y|\boldsymbol{X}) = l(Y|\boldsymbol{X};\boldsymbol{\theta}) - \alpha \cdot l_a(Y|\boldsymbol{X};\boldsymbol{\phi}),$$

ULD Inference on Query to Forget Knowledge

- We seek an assistant LLM that remembers D_f , but no knowledge about D_r
- Then ensemble with original model to simulate unlearn in decoding

$$l_f(Y|\boldsymbol{X}) = l(Y|\boldsymbol{X};\boldsymbol{\theta}) - \alpha \cdot l_a(Y|\boldsymbol{X};\boldsymbol{\phi}),$$

ULD Inference on Query to Retain Knowledge

• Training assistant with a well-defined objective:

$$\min_{oldsymbol{\phi}} \mathcal{L}(oldsymbol{\phi}) = \min_{oldsymbol{\phi}} \mathcal{L}_f(oldsymbol{\phi}) - eta \mathcal{L}_r(oldsymbol{\phi}).$$

 $\mathsf{Remember }^{\mathsf{D}\mathsf{f}}\mathcal{L}_f(\boldsymbol{\phi}) = \mathbb{E}_{[\boldsymbol{x},y] \sim \mathcal{D}'_f}[\mathsf{CE}(\operatorname{softmax}(l_a(Y|\boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\phi})); \delta(Y = y))],$

$$\underset{\mathsf{ign} \mathsf{orant}}{\mathsf{rant}} \underset{\mathcal{L}_r}{\mathsf{of}} \underset{\mathcal{L}_r}{\mathsf{D}_r} (\boldsymbol{\phi}) = -\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_r'} [\mathsf{CE}(\operatorname{softmax}(l_a(Y | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\phi})); U(Y))],$$

• Training assistant with a well-defined objective:

$$\min_{\boldsymbol{\phi}} \mathcal{L}(\boldsymbol{\phi}) = \min_{\boldsymbol{\phi}} \mathcal{L}_f(\boldsymbol{\phi}) - \beta \mathcal{L}_r(\boldsymbol{\phi}).$$

 $\mathsf{Remember } {}^{\mathsf{D} \mathsf{f}} \mathcal{L}_f(\boldsymbol{\phi}) = \mathbb{E}_{[\boldsymbol{x}, y] \sim \mathcal{D}_f'}[\mathsf{CE}(\operatorname{softmax}(l_a(Y | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\phi})); \delta(Y = y))],$

$$\substack{ \mathsf{Remain} \\ \mathsf{ignorant} \text{ of } \mathcal{D}_r \\ \mathcal{L}_r(\boldsymbol{\phi}) = -\mathbb{E}_{\boldsymbol{x}\sim \mathcal{D}'_r}[\mathsf{CE}(\operatorname{softmax}(l_a(Y|\boldsymbol{X}=\boldsymbol{x};\boldsymbol{\phi}));U(Y))],$$

• An efficient training scheme

20M trainable parameter, 0.28% full model

Main result

TOFU: unlearn fictional author information

	TOFU-1%			TOFU-5%								
Method	Forget	Perf.	Retain	Perf.	Forget	Perf.	Retain	Perf.	Forget	Perf.	Retain	Perf.
	$F.Q.\uparrow$	R-L	<i>M.U</i> . ↑	$R-L\uparrow$	<i>F.Q.</i> ↑	R-L	<i>M.U.</i> ↑	$R-L\uparrow$	$F.Q.\uparrow$	R-L	<i>M.U.</i> ↑	$R-L\uparrow$
Target LLM	1e-3	95.2	0.62	98.2	3e-16	97.3	0.62	98.2	2e-19	98.6	0.62	98.2
Retain LLM	1.0	37.6	0.62	98.5	1.0	39.3	0.62	98.1	1.0	39.8	0.62	98.2
GA	0.40	34.4	0.52	59.6	0.05	24.4	0.37	31.3	8e-10	0	0	0
GA+GD	0.27	30.5	0.53	58.9	0.11	19.5	0.33	28.9	9e-3	19.6	0.17	23.9
GA+KL	0.40	35.2	0.53	59.9	0.14	20.3	0.35	29.2	2e-4	12.1	0.05	18.6
DPO	0.27	4.09	0.58	55.2	1e-4	1.1	0.02	0.89	5e-7	0.7	0	0.72
DPO+GD	0.25	4.08	0.58	56.5	1e-7	1.2	0.02	0.84	8e-10	0.8	0	0.89
DPO+KL	0.26	4.18	0.58	55.6	4e-5	1.1	0.03	0.93	5e-8	0.7	0.03	0.81
NPO	0.66*	39.2	0.52	62.8	0.68	15.9	0.19	24.6	0.09	15.2	0.26	15.3
NPO+GD	0.58*	34.5	0.57	63.1	0.46	24.7	0.44	36.5	0.29	25.7	0.53	41.1
NPO+KL	0.52*	33.7	0.54	58.7	0.44	24.2	0.48	40.2	0.07	18.1	0.32	22.9
Offset-GA+KL	0.27	44.7	0.52	45.8	1e-4	1.2	0	0	2e-6	3.1	0.04	2.9
Offset-DPO+KL	0.13	3.8	0.12	19.1	2e-8	0	0	0	3e-9	1.3	0.02	1.4
Offset-NPO+KL	0.41	31.4	0.43	34.5	5e-10	37.3	0.59	40.9	4e-5	34.2	0.48	34.8
ULD	0.99	40.7	0.62	98.3	0.73	41.2	0.62	93.4	0.48	42.6	0.62	85.9

Training stability

Trajectory of Model utility versus forget quality (log) for different unlearning method on TOFU-10%

Training efficiency

Log forget quality versus relative training time to ULD on TOFU-10%. The top-left corner indicates better forget performance and efficiency.

Mathad	Data config		Forget	Perf.	Retain Perf.		
Method	$\mid \mathcal{D}_{f}'$	${\cal D}'_r$	<i>F.Q.</i> ↓	R-L	$M.U.\uparrow$	$R-L\uparrow$	
Target LLM	-	-	2e-19	98.6	0.62	98.2	
Retain LLM	-	-	1.0	39.8	0.62	98.2	
GA+KL		1	4e-7	0	0	0	
DPO+KL	1	\checkmark	7e-11	0	0	0	
NPO+KL		\checkmark	1e-4	12.3	0.08	18.4	
Offset-NPO+KL		1	6e-9	15.8	0.24	28.7	
ULD	×	×	1e-7	13.7	0.53	34.1	
ULD	×	\checkmark	1e-9	43.8	0.63	84.1	
ULD	1	X	0.51	12.7	0.55	72.3	
ULD	1	1	0.52	42.4	0.62	86.4	

TOFU-10% unlearning performance for different methods using augmented Forget/Retain Data. The data augmentation is mostly useful for our method.

Thanks!

Contact: jiabaoji@ucsb.edu