

TransAgent: Transfer Vision-Language Foundation Models with Heterogeneous Agent Collaboration

Yiwei Guo^{1,2}, Shaobin Zhuang^{3,4}, Kunchang Li^{1,2,3}, Yu Qiao³, Yali Wang^{1,3}

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences 2University of Chinese Academy of Sciences 3Shanghai AI Laboratory 4Shanghai Jiao Tong University

1

Background

Vision-Language foundation models (e.g., CLIP^[1]) have recently shown their power in **transfer learning** owing to large-scale image-text pre-training.

These models are typically pre-trained on **general domain data**, and struggle to generalize well on **diversified target domain data** (e.g., fine-grained) due to large **domain shift**.

[1] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision. (ICML2021)

Motivation

Existing methods typically adapt the representation of foundation models to downstream tasks. However, it is challenging to achieve good generalization by adopting such a single model, especially under low-shot regime.

Alternatively, expert models from different modalities, tasks, networks and datasets contain **complementary knowledge** with CLIP-like models, and can be utilized to further boost the generalization ability of foundation models.

Contributions

\triangleright Knowledge Versatility

- TransAgent leverages **11** heterogeneous agents from vision, language and multi-modal research.
- The diversified knowledge are **complementary** with CLIP-like models.
- \triangleright Transfer Flexibility
	- TransAgent leverages the proposed **Mixture-of-agents (MoA)** gating mechanism to **adaptively integrate** external knowledge of different agents in each modality.
- \triangleright Deployment Efficiency
	- **Multi-source distillation** is applied to transfer knowledge of heterogeneous agents into CLIP.
	- Along with **prompt learning**, TransAgent achieves deployment efficiency without a heavy model ensemble.

Method: Overview

Method: Vision Agent Collaboration (VAC)

VAC integrates visual knowledge via MoA gating and transfers the knowledge through layer-wise feature distillation:

$$
\mathbf{W}_V = \text{MLP}(\text{Concat}(\{\mathbf{V}_A(i)\}))
$$
, $\mathbf{V}_A = \sum_i \mathbf{W}_V(i)\mathbf{V}_A(i)$

$$
\mathcal{L}_{\text{VAC}} = |\mathbf{V} - \mathbf{V}_{A}|
$$

Method: Language Agent Collaboration (LAC)

LAC enhances the textual representations through class-specific feature distillation between the prompted textual feature and the gated textual feature:

$$
\mathbf{W}_T = \text{MLP}(\text{Concat}(\{\mathbf{T}_A(j)\}))
$$
, $\mathbf{T}_A = \sum_j \mathbf{W}_T(j)\mathbf{T}_A(j)$

$$
\mathcal{L}_{\text{LAC}} = |\mathbf{T} - \mathbf{T}_{A}|
$$

Method: Multi-modal Agent Collaboration (MAC)

We extract the cross attention maps from the *T2I agents* and then obtain the score vectors through LogSumExp (LSE) pooling:

$$
\mathbf{S}_{T2I} = \log(\sum_{k} \exp(\mathbf{M}_k))
$$

We compute the score vectors from the *I2T agents* as the cosine similarity between the projected visual feature and the LLM's textual feature:

$$
\mathbf{S}_{I2T} = \frac{\exp(\text{sim}(proj(f_V), f_T))}{\sum_{i=1}^{C} \exp(\text{sim}(proj(f_V), f_T^i))}
$$

Method: Multi-modal Agent Collaboration (MAC)

Finally, we perform score distillation between the learned score vectors and the gated score vectors to further align the learnable prompts:

$$
\mathbf{M}_A = \text{Concat}(\{\mathbf{S}_{T2I}, \mathbf{S}_{I2T}\})
$$

$$
\mathbf{W}_{\mathcal{S}} = \text{MLP}(\mathbf{M}_{A}), \ \ \mathbf{S}_{A} = \sum_{n} \mathbf{W}_{\mathcal{S}}(n) \mathbf{M}_{A}(n)
$$

 $\mathcal{L}_{MAC} = KL(softmax(S_P)||softmax(S_A))$

Method: Multi-source Knowledge Distillation

Finally, we combine all the distillation loss from multiple sources, achieving heterogeneous agent collaboration for knowledge transfer:

 $\mathcal{L}_{\text{TransAgent}} = \mathcal{L}_{\text{CE}} + \lambda_1 \mathcal{L}_{\text{MAC}} + \lambda_2 \mathcal{L}_{\text{MAC}} + \lambda_3 \mathcal{L}_{\text{MAC}}$

where λ_1 , λ_2 , λ_3 are hyperparameters.

By fine-tune the learnable prompts with distillation strategy, all the agents can be unloaded and the modality-specific gates can be abandoned in the inference phase, which largely boosts deployment efficiency.

Experiments

Comparisons on *base-to-novel generalization*

Our TransAgent exhibits strong generalization ability and outperforms previous SOTA on all datasets. The best results are **bolded**.

Experiments

Comparisons on *few-shot classification*

TransAgent demonstrates SOTA performance for all few-shot settings on different datasets, which proves promising learning capability even under extremely limited supervision.

Experiments

Comparisons on *cross-dataset evaluation* and *domain generalization*

TransAgent does not overfit on the source dataset and leads to an overall improvement over the previous methods.

TransAgent improves the robustness of VLMs against out-of-distribution data.

cross-dataset evaluation domain generalization

Conclusion

- We propose a unified framework to transfer vision-language foundation models through heterogeneous agent collaboration.
	- \Box Achieving knowledge versatility by leveraging diversified knowledge from external experts
	- \Box Achieving transfer flexibility by adaptively integrating the external knowledge via MoA gating mechanism
	- \Box Achieving deployment efficiency by multi-source distillation along with prompt learning
- TransAgent achieves state-of-the-art performance on 11 datasets under the low-shot scenarios.

Thank You