

Get Rid of Task Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework

Zhongchao Yi Zhengyang Zhou* Qihe Huang Yanjiang Chen Liheng Yu Xu Wang Yang Wang*

> Exploring ST Intelligence across Tasks

Trajectory

OOD Generalization for ST Prediction

Temporal 📥 Distribution shift over time series (distribution shift)

Model transfer across cities (inter-city transfer, ...)



Traffic accident

Multi-task intelligence

A unified model for fast transfer, fine-tuning on different tasks of the same ST domain is highly required !

Road sensor

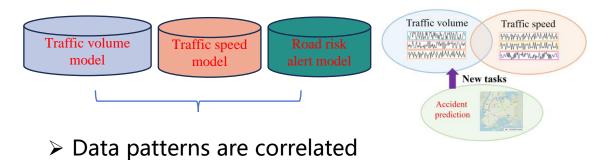
Common ST associations for cold-start and challenging tasks

Remote sense

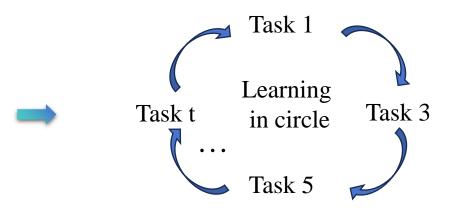
Without re-training model for a different task

Task-guided Model Evolution Green ST computing

Challenges & Solutions



- > Models are isolated, not shared and interactive
- Cold-start challenges for new tasks
- How to capture commonalities among tasks ?
- How to utilize commonalities and personalities to enhance each individual tasks and new tasks ?



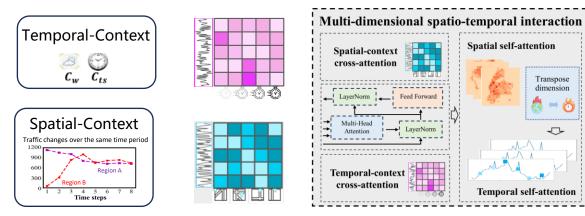
- Cross-interaction of different dimensions of data
- Capture the model behavior through rolling training, and decouple the common/individual patterns

Continuous Multi-task SpatioTemporal (CMuST)

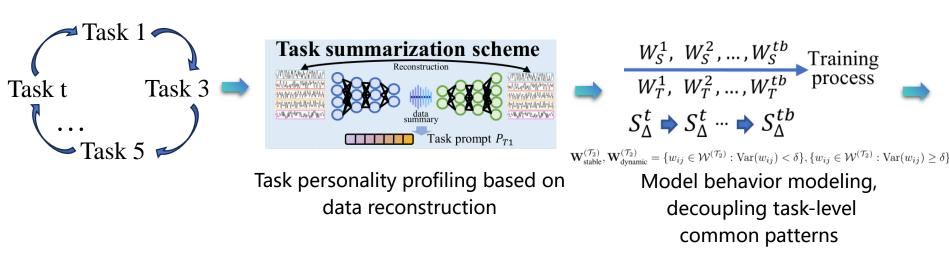
Transpose dimension

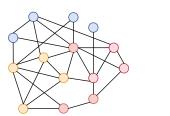
> ST Intelligence for Task Continuous Learning

Multi-dimensional Spatio-Temporal Interaction (MSTI) \geq

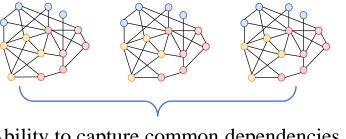


Rolling Adaptation (RoAda)

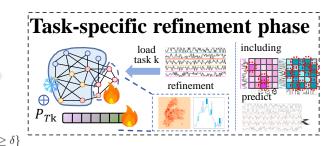




More informative and dimension-level relations encapsulated Multi-dimensional, multi-perspective spatial and temporal interaction



Ability to capture common dependencies on data dimensions across tasks



Task-specific fine-tuning

Continuous Multi-task SpatioTemporal (CMuST)

щ 11.25 ≹

11.20

11.15

₹ 6.9

creasing.

Traffic speed

model

Collective intelligence

With the RoAda phrase progressing

(a) Visualizing attention across training phases.

Traffic volume

model

Crowd In

Taxi Pick

46 มี¥ 13.1

13.0 12.9

MAE

MAPE

34 🖏 щ 6.0

(b) Performance variation along with task in-

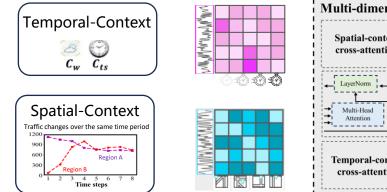
5.9

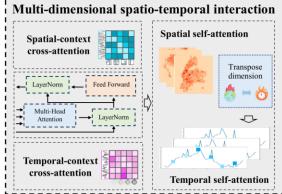
Crowd Out

2 3 Taxi Drop

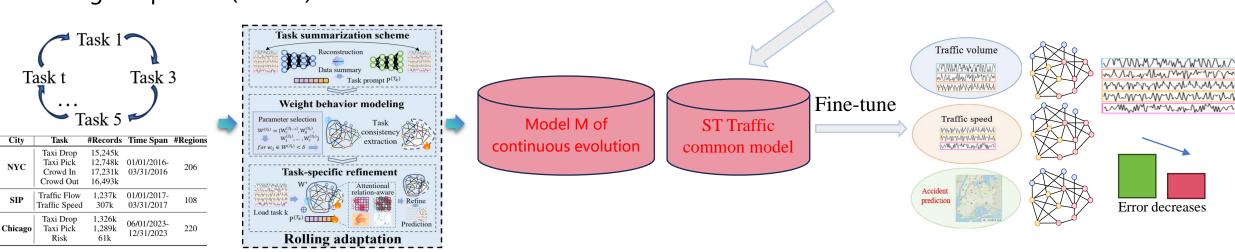
> ST Intelligence for Task Continuous Learning

Multi-dimensional Spatio-Temporal Interaction (MSTI)





Rolling Adaptation (RoAda)



Experiments

Datasets

- NYC: Includes three months of crowd flow and taxi hailing from Manhattan and its surrounding areas in New York City. Tasks: Crowd In, Crowd Out, Taxi Pick, and Taxi Drop.
- SIP: Contains records of *Traffic Flow* and *Traffic Speed* within Suzhou Industrial Park over a period of three months.
- Chicago: Comprises of traffic data collected in the second half of 2023 from Chicago, including three tasks: *Taxi Pick, Taxi Drop,* and *Risk*.

City	Task	#Records	Time Span	#Regions	#Time Steps	Time Interval
NYC	Taxi Drop Taxi Pick Crowd In Crowd Out	30,245k	01/01/2016- 03/31/2016	206	4368	30mins
SIP	Traffic Flow Traffic Speed	1,237k 307k	01/01/2017- 03/31/2017	108	25920	5mins
Chicago	Taxi Drop Taxi Pick Risk	3,291k 61k	06/01/2023- 12/31/2023	220	10272	30mins

Comparison with existing ST models

Datesets		NYC				S	IP	Chicago		
Methods	Metrics	Crowd In	Crowd Out	Taxi Pick	Taxi Drop	Traffic Flow	Traffic Speed	Taxi Pick	Taxi Drop	Risk
DCRNN	MAE	17.5289	19.5667	10.8188	9.6142	12.5326	0.7044	3.0624	2.5793	1.1174
DURNIN	MAPE	0.5939	0.5695	0.4330	0.4818	0.2455	0.2686	0.4237	0.4816	0.2504
AGCRN	MAE	11.5135	13.1569	7.0675	6.0066	15.8319	0.6924	2.3542	2.0884	1.1183
	MAPE	0.5094	0.4773	0.3753	0.3665	0.2926	0.2744	0.4092	0.4046	0.2505
GWNET	MAE	11.4420	13.2992	7.0701	6.1171	13.0529	0.6900	2.3671	2.0434	1.1197
	MAPE	0.4778	0.6171	0.3713	0.3514	0.2483	0.2655	0.3912	0.4044	0.2514
STGCN	MAE	11.3766	13.3522	7.1259	5.9268	15.3501	0.7111	2.3781	2.1427	1.1184
	MAPE	0.5018	0.4318	0.3234	0.3339	0.3041	0.2660	0.4074	0.4331	0.2507
GMAN	MAE	11.3414	13.1923	7.0662	6.0912	13.0368	0.6952	2.3663	2.0316	1.1182
GMAN	MAPE	0.4782	0.6065	0.3652	0.3468	0.2464	0.2678	0.3953	0.4036	0.2516
ASTGCN	MAE	14.2847	17.1582	9.1430	7.7063	16.4896	0.6980	2.5091	2.1520	1.1175
ASIGCN	MAPE	0.6396	0.5922	0.4607	0.4524	0.3104	0.2682	0.4593	0.4413	0.2502
STTN	MAE	12.1994	14.1966	7.6716	6.3816	15.1751	0.6939	2.2996	2.0355	1.1214
	MAPE	0.4757	0.4744	0.3600	0.3763	0.2881	0.2625	0.3893	0.4133	0.2518
MTGNN	MAE	11.4350	13.3072	7.0736	6.1162	13.0486	0.6989	2.3692	2.0361	1.1201
MIGNN	MAPE	0.4785	0.6185	0.3782	0.3502	0.2475	0.2687	0.3979	0.4073	0.2578
STEP	MAE	11.2328	13.1043	6.9619	5.9101	12.0032	0.6970	2.3592	2.0168	1.1190
SIEP	MAPE	0.4537	0.4361	0.3248	0.3379	0.2391	0.2638	0.3914	0.4019	0.2507
Decompter	MAE	11.0036	13.0237	6.8711	5.8797	11.8620	0.6921	2.3576	2.0065	1.1186
PromptST	MAPE	0.4465	0.4358	0.3265	0.3382	0.2375	0.2632	0.3913	0.4012	0.2511
CMuST	MAE MAPE	<u>11.1533</u> 0.4384	12.9088 0.4265	6.7581 0.3118	5.8546 0.3375	11.5811 0.2279	0.6843 0.2585	2.3264 0.3872	2.0034 0.4009	1.1172 0.2503

> Experiment Design

- Single-task learning: Treat different task sets as separate datasets to train and test the models respectively, train 5 times and take the average results.
- Multi-task learning: Align the features of different types of data in the same city into the same graph, and concatenates the data features for training the model.

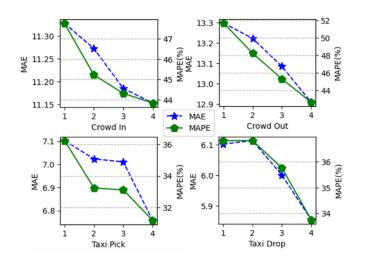
Experiments & Conclusion

> Robustness in data-scarce scenarios

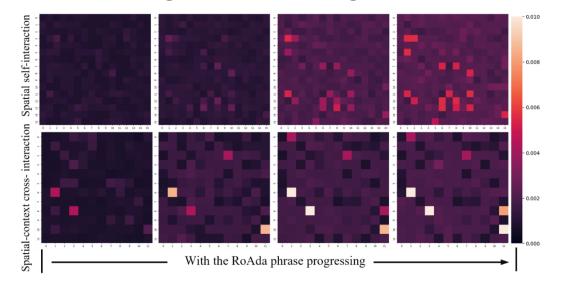
Reducing part of the spatial nodes, as well as extending the time interval to reduce the number of samples, to investigate the robustness in challenging with limited data.

model	NYC for Crowd In								
							4 times i MAE		
GWNET STEP PromptST	13.1827	0.4772	12.2393	0.4612	20.1936	0.4436	20.1465	0.4915	
CMuST	12.1611	0.4506	11.2864	0.4470	18.2925	0.4279	18.4084	0.4797	

Performance with task increasing



> Visualizing attention weights



Contributions

- ✓ The first continuous multi-task spatiotemporal learning framework, reinforcing individual correlated learning task in collective perspective.
- Propose two innovative learning modules, MSTI and RoAda, enabling common and individual pattern extraction.
- ✓ Construct multi-task ST learning benchmarks for three cities.

Thank You for Listening

References

Zhengyang Zhou et al. (2023). "Maintaining the status quo: Capturing invariant relations for ood spatiotemporal learning." In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3603-3614.

Qihe Huang et al. (2024). "Leret: Language-empowered retentive network for time series forecasting." In: Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 4165-4173.

Zezhi Shao et al. (2022). "Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting." In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4454-4458.

Contact

Zhongchao Yi: <u>zhongchaoyi@mail.ustc.edu.cn</u> Zhengyang Zhou: <u>zzy0929@ustc.edu.cn</u> Yang Wang: <u>angyan@ustc.edu.cn</u>