

Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering

Jie Ma^{†1*}, Min Hu^{†1,4}, Pinghui Wang¹, Wangchun Sun¹, Lingyun Song², Hongbin Pei¹, Jun Liu³, Youtian Du¹

- ¹ MOE KLINNS Lab, Xi'an Jiaotong University, China
- ² School of Computer Science, Northwestern Polytechnical University, China
- ³ School of Computer Science and Technology, Xi'an Jiaotong University, China
- ⁴ China Mobile System Integration Co.
- [†] Equal Contribution
- * Corresponding Author

>> Motivation

 Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning task, demanding intelligent systems to accurately respond to natural language queries based on audio-video input pairs.

Predefined Question Template: Is the <Object> in the video always playing?

Question 1: have existing datasets comprehensively measured model robustness?

Question 2: have existing methods overcome the data bias?

Dataset Development and Analysis

• The construction of this dataset involves two key processes: rephrasing and splitting.

The former involves the rephrasing of questions in the test split of MUSIC-AVQA, and the latter is dedicated to the categorization of questions into frequent (head) and rare (tail) subsets.

• Architecture of multifaceted cycle collaborative debiasing

>> Main Results on the MUSIC-AVQA Dataset

Method	MCCD	Audio QA			1	isual Q	A	AVQA							
		CNT	COMP	Avg.	CNT	LOC	Avg.	EXIST	LOC	CNT	COMP	TEMP	Avg.	Avg.	
FCNLSTM	×	70.45	66.22	68.88	63.89	46.74	55.21	82.01	46.28	59.34	62.15	47.33	60.06	60.34	
	✓	70.99	66.50	69.34	66.08	59.02	62.51	83.50	57.17	60.47	61.58	57.54	64.11	64.61	
CONVLSTM	×	74.07	68.89	72.15	67.47	54.56	60.94	82.91	50.81	63.03	60.27	51.58	62.24	63.65	
	\checkmark	72.76	69.53	71.57	69.59	58.12	63.79	82.69	56.09	62.13	62.03	55.11	63.87	65.21	
BiLSTM Attn	×	70.35	47.92	62.05	64.64	64.33	64.48	78.39	45.85	56.91	53.09	49.76	57.10	59.92	
	✓	68.24	54.88	63.31	61.65	55.92	58.75	79.15	41.96	55.02	49.41	49.15	55.18	57.56	
HCAttn	×	70.25	54.91	64.57	64.05	66.37	65.22	79.10	49.51	59.97	55.25	56.43	60.19	62.30	
	 ✓ 	69.52	53.37	63.56	63.99	65.47	64.74	78.64	47.28	61.11	55.86	55.72	60.03	61.90	
MCAN	×	77.50	55.24	69.25	71.56	70.93	71.24	80.40	54.48	64.91	57.22	47.57	61.58	65.49	
	 ✓ 	78.27	56.57	70.27	71.93	71.18	71.55	81.48	54.24	65.77	55.86	46.84	61.54	65.74	
GRU	×	72.21	66.89	70.24	67.72	70.11	68.93	81.71	59.44	62.64	61.88	60.07	65.18	67.07	
	 ✓ 	73.35	66.16	70.70	67.25	71.43	69.36	81.98	60.11	63.08	62.76	61.19	65.84	67.63	
HCRN	×	68.59	50.92	62.05	64.39	61.81	63.08	54.47	41.53	53.38	52.11	47.69	50.26	55.73	
	 ✓ 	72.17	64.65	69.40	67.42	60.82	64.08	79.66	48.70	65.14	61.22	55.72	60.40	64.20	
HME	×	74.76	63.56	70.61	67.97	69.46	68.76	80.30	53.18	63.19	62.69	59.83	64.05	66.45	
	✓	72.96	62.29	69.03	68.76	69.31	69.03	80.77	52.61	62.92	63.03	60.71	64.19	66.33	
PSAC	×	75.64	66.06	72.09	68.64	69.79	69.22	77.59	55.02	63.42	61.17	59.47	63.52	66.54	
	 ✓ 	75.02	65.66	71.57	69.09	69.88	69.49	79.35	53.04	61.98	61.13	57.66	62.85	66.15	
AVSD	×	72.41	61.90	68.52	67.39	74.19	70.83	81.61	58.79	63.89	61.52	61.41	65.49	67.44	
	✓	72.07	63.97	69.09	67.42	74.53	71.02	81.17	59.13	63.08	62.49	63.50	65.82	67.77	
LAViT	×	74.36	64.56	70.73	69.39	75.65	72.56	81.21	59.33	64.91	64.22	63.23	66.64	68.93	
	✓	75.12	65.49	71.57	70.43	76.73	73.62	81.38	60.33	65.30	62.49	62.29	66.42	69.24	
STG	×	78.18	67.05	74.06	71.56	76.38	74.00	81.81	64.51	70.80	66.01	63.23	69.54	71.52	
COCA	×	79.35	66.50	74.61	72.35	76.08	74.24	83.50	64.02	70.99	63.40	64.48	69.47	71.64	
Ours	\checkmark	83.87	71.04	79.14	79.78	76.73	78.24	80.87	51.63	71.46	64.67	64.60	67.13	72.20	
LAVisH	×	81.32	63.30	74.67	79.20	80.57	79.89	83.40	65.22	72.96	64.03	66.18	70.57	73.76	
	✓	80.33	63.80	74.24	78.86	81.31	80.10	73.91	65.22	73.91	64.31	66.55	70.80	73.87	

>> Main Results on the MUSIC-AVQA-R Dataset

		Audio QA				Visual QA				AVQA										All
Method	MCCD	CNT		СОМР		CNT		LOC		EXIST		LOC		CNT		COMP		TEMP		Avg.
		H	Т	Н	Т	H	Т	Н	Т	Н	Т	Н	Т	Н	Т	Н	Т	Н	Т	
FCNLSTM	×	66.23	36.48	64.78	51.14	61.75	5.31	54.86	51.06	64.76	78.52	46.66	57.30	62.69	7.23	43.13	71.67	37.02	30.78	54.12
	 ✓ 	62.51	34.44	61.19	51.26	61.11	5.66	57.73	50.36	62.48	82.40	45.49	60.09	62.07	7.16	44.55	69.46	36.55	30.74	54.55
CONVLSTM	×	70.22	41.14	67.50	52.93	62.11	9.17	53.44	49.88	60.08	84.82	46.46	59.90	56.52	8.18	43.29	72.52	41.54	45.12	55.20
	✓	68.38	41.58	68.39	52.10	61.46	9.56	54.17	50.33	59.61	83.11	55.29	56.52	59.13	7.82	45.31	72.70	41.26	45.40	55.74
BiLSTM Attn	×	73.68	46.32	21.51	77.58	64.30	0.00	53.92	42.01	87.51	21.14	35.16	43.75	62.85	2.18	27.61	74.38	17.58	31.32	48.84
	 ✓ 	73.30	45.16	20.71	77.48	64.41	0.00	56.08	42.54	87.47	21.04	34.47	43.51	63.33	2.18	26.01	75.48	17.92	32.67	49.55
HCAttn	×	61.67	41.63	59.09	47.14	56.52	9.20	67.01	53.16	66.57	61.13	37.05	42.48	59.53	12.48	48.81	60.12	33.82	39.26	51.90
	 ✓ 	62.50	41.43	58.89	47.42	56.65	8.85	67.31	52.92	66.82	59.87	38.25	42.53	59.38	12.42	57.39	52.01	32.84	39.55	52.29
CPU	×	66.92	48.63	58.29	59.61	64.37	11.79	57.68	57.66	76.30	64.76	41.05	45.61	60.71	18.68	57.19	57.38	31.02	40.67	55.21
OKU	 ✓ 	69.94	48.09	56.31	63.77	66.24	13.36	63.55	57.59	83.04	54.16	43.36	43.36	57.89	18.36	53.93	59.65	30.82	38.23	55.70
MCAN	×	75.02	60.16	58.89	50.09	64.58	26.69	66.48	62.25	51.29	67.29	46.11	61.61	64.76	25.28	50.57	52.40	34.64	58.05	57.27
	✓	73.53	56.14	68.31	39.44	65.51	29.40	68.41	60.09	58.80	61.90	46.75	60.61	60.54	31.89	69.09	44.94	32.44	57.78	58.22
UCDN	×	55.53	53.31	47.17	32.44	41.87	23.55	39.40	51.27	41.81	65.45	36.62	42.72	54.58	19.57	33.33	36.87	40.47	44.13	43.92
HCRN	 ✓ 	51.96	49.21	43.42	36.78	41.13	20.71	37.79	50.99	44.38	58.40	35.05	46.33	54.39	20.90	34.50	33.14	40.13	44.00	42.87
ID (F	×	62.60	53.95	54.97	58.29	50.95	16.46	73.25	58.60	65.74	66.49	33.79	46.03	63.18	17.18	53.20	60.57	33.95	41.57	53.66
HME	 ✓ 	60.62	53.85	62.22	53.01	52.90	14.96	72.56	58.56	55.47	69.21	32.27	42.97	69.90	12.36	43.51	72.51	36.65	32.61	53.34
PSAC	×	53.01	56.68	57.41	48.12	49.55	26.43	72.96	60.69	50.56	55.54	41.98	52.30	56.70	19.58	38.13	58.92	26.68	46.24	50.45
	 ✓ 	55.14	52.26	64.70	44.45	52.34	22.15	72.06	60.70	58.97	52.35	41.18	49.78	53.28	18.85	42.60	64.53	25.81	45.68	51.31
AVSD	×	54.00	47.84	60.61	47.79	60.34	10.07	74.78	61.43	66.28	61.98	33.00	40.35	46.21	8.06	51.98	66.00	40.14	41.52	52.33
	 ✓ 	55.87	40.18	65.41	48.05	63.32	7.41	73.78	58.20	74.74	70.80	37.85	34.55	35.53	6.11	49.96	67.88	44.03	43.89	53.09
LAViT	×	50.57	43.45	50.78	44.93	47.28	15.50	67.19	65.51	52.37	22.04	44.35	61.69	52.21	21.52	45.61	40.49	35.00	49.33	47.40
	 ✓ 	45.05	45.09	57.33	41.26	48.62	17.00	69.91	65.90	60.61	29.57	43.17	57.57	53.92	22.09	54.46	35.35	33.99	49.40	48.91
STG	×	56.40	41.48	62.28	57.59	59.86	12.94	64.31	54.00	73.35	77.26	35.35	40.49	48.31	8.41	53.30	62.44	40.25	38.15	52.80
LAVisH	×	61.73	43.99	65.06	60.38	65.53	11.13	70.21	64.73	77.83	79.46	41.76	41.20	49.88	14.87	59.26	65.10	41.84	46.26	57.63
	 ✓ 	74.02	65.17	64.73	53.15	71.96	40.56	68.49	66.00	63.17	66.68	30.11	43.80	63.77	26.51	56.31	63.46	50.79	42.85	59.25
Ours	 ✓ 	84.32	67.23	64.68	62.18	75.09	48.42	80.47	66.38	77.22	67.58	55.15	82.23	70.12	39.83	61.26	58.17	43.67	58.33	66.95

Comparison in the MUSIC-AVQA-R dataset

• Answer distribution between train and test split in the MUSIC-AVQA-R dataset.

Thanks

