

YOLOV10: REAL-TIME END-TO-END OBJECT DETECTION

Ao Wang¹, Hui Chen^{2,†}, Lihao Liu¹, Kai Chen¹, Zijia Lin¹, Jungong Han¹, Guiguang Ding^{1,†} ¹Tsinghua University ²BNRist

Background

- Since the initial release in 2015, YOLO (You Only Look Once) series of models has achieved significant advancements in the field of real-time object detection. It enjoys high performance and fast inference speed.
- The typical architecture of YOLO includes Backbone, FPN, and Head, for extracting multi-scale features, fusing these features, and outputting predictions, respectively.

Motivation

- YOLO relies on Non-Maximum Suppression (NMS) for post-processing, which hinders end-to-end deployment.
 - Adopt consistent dual assignments to eliminate the NMS.
 - Enjoy rich supervision and end-to-end inference simultaneously.
- YOLO variants exhibit computational redundancy and limited modeling capacity, indicating the room for improvement in both efficiency and accuracy.
 - Employ efficiency-driven model design simplifies components.
 - Utilize accuracy-driven model design enhances the performance.
- Improvements based on YOLOv8 lead to the YOLOv10.

Motivation

- YOLOv10 achieves state-of-the-art balance between performance and efficiency across various scales.
- YOLOv10-S is 1.8× faster than RT-DETR-R18, with 2.8× fewer parameters and FLOPs.
- Compared to YOLOv9-C, YOLOv10-B reduces latency by 46% and parameters by 25% while maintaining comparable performance.

Methodology

Consistent Dual Assignments for NMS-free Training

- One-to-one matching eliminates the need for NMS but with limited supervisory information. In contrast, one-to-many strategy provides rich supervision signal. Therefore, dual label assignments are introduced for YOLO, as shown in the Figure (a), to fully leverage the advantages of both strategies.
- Consistent matching metric is further employed to minimize the supervision gap between two heads, as shown in the Figure (b). Assuming the matching metric takes the form m = p^αIoU^β, then α_{o2o} = r · α_{o2m} and β_{o2o} = r · β_{o2m}, which encourage the same optimal positive sample for two branches

Methodology

- Efficiency driven model design
 - Lightweight classification head: Employ the lightweight design of PW(DW) to reduce the redundancy in the classification task.
 - Spatial-channel decoupled downsampling: Decouple the spatial reduction by DW and the channel expansion by PW for efficiency. (a) & (b)

Rank-guided block design: Adopt the compact inverted block for higher efficiency adaptively based on the intrinsic ranks which indicates the redundancy. (c) & (d)

Methodology

- Accuracy driven model design
 - Large kernel convolution: Employ large kernel DW to effectively compensates for the insufficient receptive field of small models. (e) & (f)
 - Partial self-attention: Introduce global representation learning by operating on partial channels to reduce the redundancy in attention heads. (g)

Experiments

Model	#Param.(M)	FLOPs(G)	$AP^{val}(\%)$	Latency(ms)	Latency ^f (ms)
YOLOv6-3.0-N [27]	4.7	11.4	37.0	2.69	1.76
Gold-YOLO-N [54]	5.6	12.1	39.6	2.92	1.82
YOLOv8-N [20]	3.2	8.7	37.3	6.16	1.77
YOLOv10-N (Ours)	2.3	6.7	38.5 / 39.5 [†]	1.84	1.79
YOLOv6-3.0-S 27	18.5	45.3	44.3	3.42	2.35
Gold-YOLO-S [54]	21.5	46.0	45.4	3.82	2.73
YOLO-MS-XS [7]	4.5	17.4	43.4	8.23	2.80
YOLO-MS-S [7]	8.1	31.2	46.2	10.12	4.83
YOLOv8-S 20	11.2	28.6	44.9	7.07	2.33
YOLOv9-S 59	7.1	26.4	46.7	-	-
RT-DETR-R18 [71]	20.0	60.0	46.5	4.58	4.49
YOLOv10-S (Ours)	7.2	21.6	46.3 / 46.8 †	2.49	2.39
YOLOv6-3.0-M [27]	34.9	85.8	49.1	5.63	4.56
Gold-YOLO-M 54	41.3	87.5	49.8	6.38	5.45
YOLO-MS [7]	22.2	80.2	51.0	12.41	7.30
YOLOv8-M 20	25.9	78.9	50.6	9.50	5.09
YOLOv9-M 59	20.0	76.3	51.1	-	-
RT-DETR-R34 [71]	31.0	92.0	48.9	6.32	6.21
RT-DETR-R50m [71]	36.0	100.0	51.3	6.90	6.84
YOLOv10-M (Ours)	15.4	59.1	51.1 / 51.3 [†]	4.74	4.63
YOLOv6-3.0-L [27]	59.6	150.7	51.8	9.02	7.90
Gold-YOLO-L 54	75.1	151.7	51.8	10.65	9.78
YOLOv9-C 59	25.3	102.1	52.5	10.57	6.13
YOLOv10-B (Ours)	19.1	92.0	52.5 / 52.7 [†]	5.74	5.67
YOLOv8-L 20	43.7	165.2	52.9	12.39	8.06
RT-DETR-R50 [71]	42.0	136.0	53.1	9.20	9.07
YOLOv10-L (Ours)	24.4	120.3	53.2 / 53.4 †	7.28	7.21
YOLOv8-X 20	68.2	257.8	53.9	16.86	12.83
RT-DETR-R101 [71]	76.0	259.0	54.3	13.71	13.58
YOLOv10-X (Ours)	29.5	160.4	54.4 / 54.4 [†]	10.70	10.60

- Compared with other YOLO variants, YOLOv10 demonstrates significant advantages in terms of accuracy, parameter count, computational complexity, and latency.
- Compared to the RT-DETR end-to-end model, YOLOv10 demonstrates superior performance in terms of latency. YOLOv10-S and YOLOv10-X are 1.8× and 1.3× faster than RT-DETR-R18 and RT-DETR-R101, respectively, with significantly fewer parameters and FLOPs.

Visualization

YOLOv10 performs well in complex and challenging scenarios.

THANKS!

