RAMP: Boosting Adversarial Robustness Against <u>M</u>ultiple I_p Perturbations for Universal Robustness

Enyi Jiang Gagandeep Singh UIUC

Multi-Norm Adversarial Robustness

l ∞ robust != l p (p = 1,2) robust

 $\ddot{}$

 \pm

I_∞ perturbation

I_1 perturbation

 $=$

I_∞ adversarially trained

Multi-Norm and Accuracy/Robustness Trade-offs

Multi-Norm tradoffs

=> Logits Pairing

Accuracy/robustness tradeoff

=> Gradient Projection

RAMP: Logits Pairing

Observation: Fine-tune a I_q-AT model on I_r examples reduces I_q robustness

RAMP: Logits Pairing

Solution: Regularize I_q, I_r logits on *correctly predicted* I_q subsets via KL loss

$$
\mathcal{L}_{KL} = \frac{1}{n_c} \cdot \sum_{i=1}^{n_c} \sum_{j=0}^{k} p_q[\gamma[i]][j] \cdot \log \left(\frac{p_q[\gamma[i]][j]}{p_r[\gamma[i]][j]} \right)
$$

 $\mathcal{L} = \mathcal{L}_{max} + \lambda \cdot \mathcal{L}_{KL}$

Combine with MAX-style loss

RAMP: Gradient Projection (GP)

Observation: Natural training (NT) can help adversarial robustness

RAMP: Gradient Projection (GP)

Solution: Find and combine useful components of NT with AT via GP

$$
\begin{aligned}\n\mathbf{G}\mathbf{P}(\hat{g}_n^l, \hat{g}_a^l) &= \begin{cases}\n\cos(\hat{g}_n^l, \hat{g}_a^l) \cdot \hat{g}_n^l, & \cos(\hat{g}_n^l, \hat{g}_a^l) > 0 \\
0, & \cos(\hat{g}_n^l, \hat{g}_a^l) \le 0\n\end{cases} \\
g_p &= \bigcup_{l \in \mathcal{M}} \mathbf{G}\mathbf{P}(\hat{g}_n^l, \hat{g}_a^l) \\
\text{for } \hat{g}_p^l, \hat{g}_p^l\n\end{aligned} \qquad \qquad \begin{aligned}\n\text{Lagerving} \\
\text{operators} \\
\text{SINR} \\
\text{S
$$

Theorem 4.5 (Error Analysis of GP). When the model dimension $m \to \infty$, for an epoch t, we have an approximation of the error difference $\Delta_{AT}^2 - \Delta_{GP}^2$ as follows

$$
\Delta_{AT}^2 - \Delta_{GP}^2 \approx \beta(2-\beta)\mathbb{E}_{\widehat{\mathcal{D}}_a^t} ||g_a - \widehat{g_a}||_\pi^2 - \beta^2 \bar{\tau}^2 ||g_a - \widehat{g}_n||_\pi^2
$$

Experiment Result: Robust Fine-tuning

RAMP obtains **better union accuracy and accuracy-robustness** tradeoff

Experiment Result: Varying Epsilons

RAMP consistently outperforms other baselines **when key tradeoff pair changes**

 $I_1 - I_2$ **Tradeoff** I_2

 - l∞ Tradeoff

Experiment Result: Universal Robustness

RAMP shows best **universal robustness**

Thank you!

Code:<https://github.com/uiuc-focal-lab/RAMP>

Contact information: enyij2@illinois.edu

Full paper