RAMP: Boosting Adversarial <u>Robustness Against</u> <u>Multiple I_p Perturbations for Universal Robustness</u>

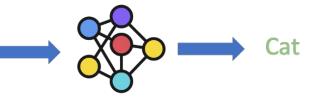
Enyi Jiang Gagandeep Singh UIUC

Multi-Norm Adversarial Robustness

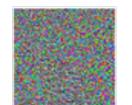
I_{∞} robust $!= I_p (p = 1,2)$ robust

+

+



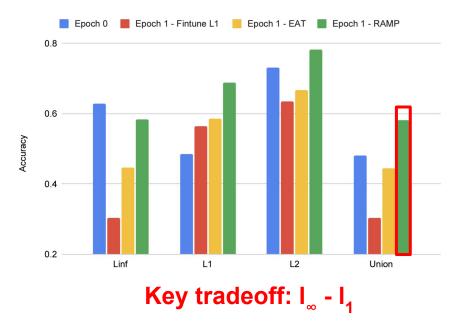
 I_{∞} perturbation


=

 I_∞ adversarially trained

I_1 perturbation

I_∞ adversarially trained


Multi-Norm and Accuracy/Robustness Trade-offs

Multi-Norm tradoffs

=> Logits Pairing


Accuracy/robustness tradeoff

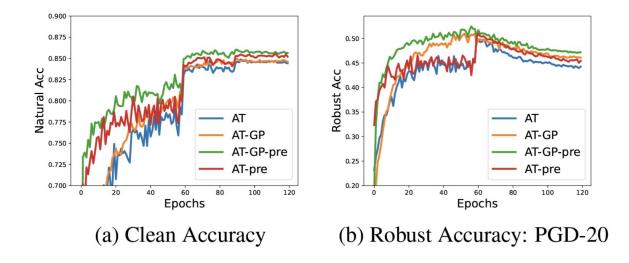
=> Gradient Projection

RAMP: Logits Pairing

Observation: Fine-tune a I_a -AT model on I_r examples reduces I_a robustness

RAMP: Logits Pairing

Solution: Regularize I_a, I_r logits on *correctly predicted* I_a subsets via KL loss


$$\mathcal{L}_{KL} = \frac{1}{n_c} \cdot \sum_{i=1}^{n_c} \sum_{j=0}^k p_q[\gamma[i]][j] \cdot \log\left(\frac{p_q[\gamma[i]][j]}{p_r[\gamma[i]][j]}\right)$$

 $\mathcal{L} = \mathcal{L}_{max} + \lambda \cdot \mathcal{L}_{KL}$

Combine with MAX-style loss

RAMP: Gradient Projection (GP)

Observation: Natural training (NT) can help adversarial robustness

RAMP: Gradient Projection (GP)

Solution: Find and combine useful components of NT with AT via GP

$$\begin{split} \mathbf{GP}(\widehat{g}_n^l, \widehat{g}_a^l) &= \begin{cases} \cos(\widehat{g}_n^l, \widehat{g}_a^l) \cdot \widehat{g}_n^l, & \cos(\widehat{g}_n^l, \widehat{g}_a^l) > 0\\ 0, & \cos(\widehat{g}_n^l, \widehat{g}_a^l) \leq 0 \end{cases} \\ g_p &= \bigcup_{l \in \mathcal{M}} \mathbf{GP}(\widehat{g}_n^l, \widehat{g}_a^l) \\ f^{(r+1)} &= f^{(r)} + \beta \cdot g_p + (1-\beta) \cdot \widehat{g}_a \end{split}$$

Theorem 4.5 (Error Analysis of GP). When the model dimension $m \to \infty$, for an epoch t, we have an approximation of the error difference $\Delta_{AT}^2 - \Delta_{GP}^2$ as follows

$$\Delta_{AT}^2 - \Delta_{GP}^2 \approx \beta (2 - \beta) \mathbb{E}_{\widehat{\mathcal{D}}_a^t} \| g_a - \widehat{g}_a \|_{\pi}^2 - \beta^2 \overline{\tau}^2 \| g_a - \widehat{g}_n \|_{\pi}^2$$

Experiment Result: Robust Fine-tuning

RAMP obtains better union accuracy and accuracy-robustness tradeoff

	Models	Methods	Clean	l_{∞}	l_2	l_1	Union
	WRN-70-16- $l_{\infty}(*)$ [Gowal et al., 2020]	E-AT	89.6	54.4	76.7	58.0	51.6
		RAMP	90.6	54.7	74.6	57.9	53.3
	WRN-34-20- l_{∞} [Gowal et al., 2020]	E-AT	87.8	49.0	71.6	49.8	45.1
		RAMP	87.1	49.7	70.8	50.4	46.9
	WRN-28-10- $l_{\infty}(*)$ [Carmon et al., 2019]	E-AT	89.3	51.8	74.6	53.3	47.9
CIFAR-10		RAMP	89.2	55.9	74.7	55.7	52.7
	WRN-28-10- $l_{\infty}(*)$ [Gowal et al., 2020]	E-AT	89.8	54.4	76.1	56.0	50.5
		RAMP	89.4	55.9	74.7	56.0	52.9
	RN-50- l_{∞} [Engstrom et al., 2019]	E-AT	85.3	46.5	68.3	45.3	41.6
		RAMP	84.3	47.0	67.7	46.5	43.3
	XCiT-S- l_{∞} [Debenedetti and Troncoso—EPFL, 2022]	E-AT	68.4	38.1	51.8	23.8	23.4
ImageNet		RAMP	66.0	35.7	50.2	30.0	29.1
	RN-50- l_{∞} [Engstrom et al., 2019]	E-AT	58.2	26.9	39.5	18.8	17.8
	Jacobi Bio 🗧 🛛 🗖	RAMP	55.6	25.1	38.3	22.4	20.9

Experiment Result: Varying Epsilons

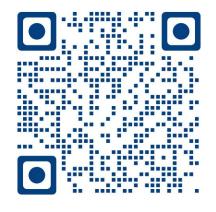
RAMP consistently outperforms other baselines when key tradeoff pair changes

		$(12, 0.5, \frac{2}{255})$				$(12, 1.5, \frac{8}{255})$					
		Clean	l_{∞}	l_2 $$	l_1	Union	Clean	l_{∞}	l_2 $$	l_1	Union
Training from Scratch	E-AT	87.2	73.3	64.1	55.4	55.4	83.5	41.0	25.5	52.9	25.5
framing from Scratch	MAX	85.6	72.1	63.6	56.4	56.4	74.6	42.9	35.7	50.3	35.6
	RAMP	86.3	73.3	64.9	59.1	59.1	74.4	43.4	37.2	51.1	37.1
Robust Fine-tuning	E-AT	86.5	74.8	66.7	57.9	57.9	80.2	42.8	31.5	52.4	31.5
Robust Fille-tunning	MAX	85.7	74.0	66.2	60.0	60.0	74.8	43.8	36.7	50.2	36.6
	RAMP	85.8	74.0	66.2	60.1	60.1	74.9	43.7	37.0	50.2	36.9

 $I_1 - I_2$ Tradeoff

 $I_2 - I_\infty$ Tradeoff

Experiment Result: Universal Robustness


RAMP shows best universal robustness

Models	Common Corruptions	l_0	fog	snow	gabor	elastic	jpeginf	Avg	Union
l ₁ -AT	78.2	79.0	41.4	22.9	40.5	48.9	48.4	46.9	12.8
l_2 -AT	77.2	67.5	48.7	26.1	44.1	53.2	45.4	47.5	16.2
l_{∞} -AT	73.4	55.5	44.7	32.9	53.8	56.6	33.4	46.2	19.1
Winninghand [Diffenderfer et al., 2021]	91.1	74.1	74.5	18.3	76.5	12.6	0.0	42.7	0.0
E-AT	71.5	58.5	35.9	35.3	50.7	55.7	60.3	49.4	21.9
MAX	71.0	56.2	42.9	35.4	49.8	57.8	55.7	49.6	24.4
RAMP	75.5	55.5	40.5	40.2	52.9	60.3	56.1	50.9	26.1

Thank you!

Code: <u>https://github.com/uiuc-focal-lab/RAMP</u>

Contact information: enyij2@illinois.edu

Full paper