

Addressing Asynchronicity in Clinical Multimodal Fusion via Individualized Chest X-ray Generation

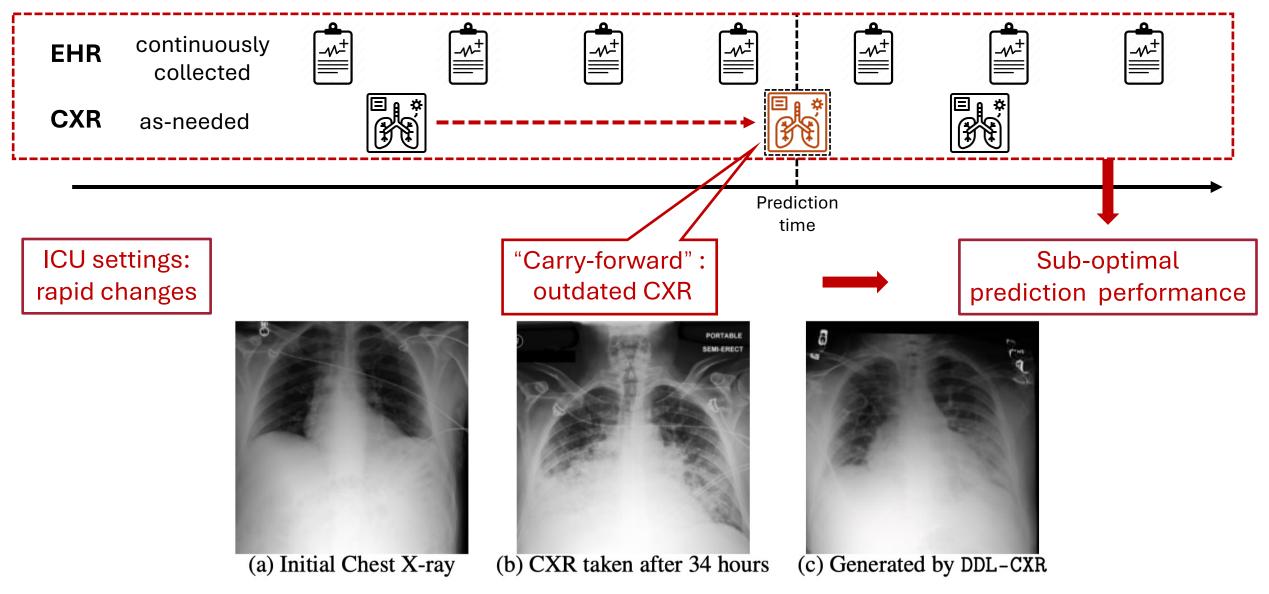
Diffusion-based Dynamic Latent Chest X-ray Image Generation (DDL-CXR)

Wenfang Yao^{*1}, Chen Liu ^{*1,3}, Kejing Yin^{2 \boxtimes}, William K. Cheung², Jing Qin¹

¹School of Nursing, The Hong Kong Polytechnic University ² Department of Computer Science, Hong Kong Baptist University ³ School of Software Engineering, South China University of Technology

https://github.com/Chenliu-svg/DDL-CXR

Challenge 1 - Clinical data are inherently highly asynchronous



Challenge 2 - Patient-specific CXR generation

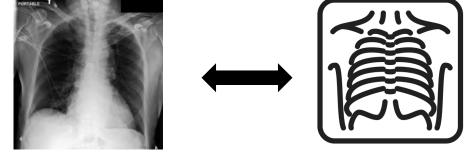
Text-to-audio / text-to-image generation Explicit controllable attributes*:

VS

Individual clinical image generation Explicit description of:

A cat in Van Gogh style

A sad orange cat



anatomical structures X

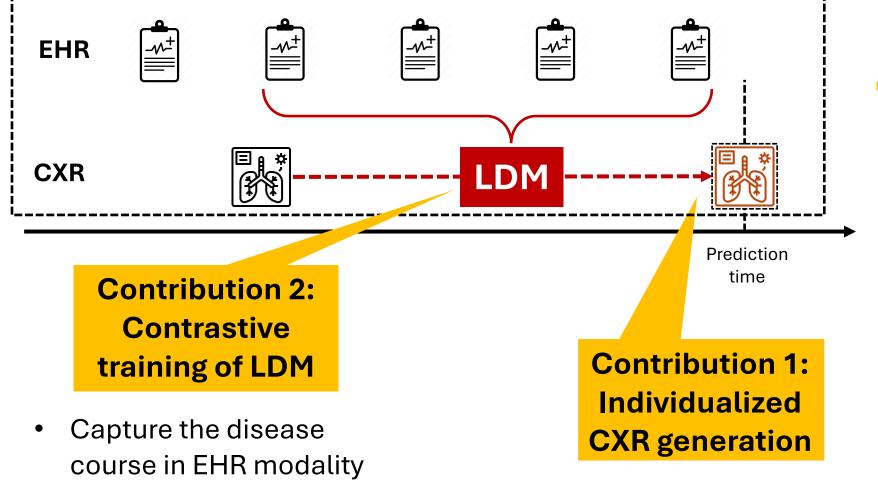
disease progression X

*Generated by Stable Diffusion.

A happy blue cat

A cat in Monet style

Contributions



Enhance cross-modal

interaction

- Tackle the asynchronicity between EHR and CXR
- Capture interaction in a highly heterogeneous setting

Contribution 3

Improved

prediction

performance

Outperform SOTA on:

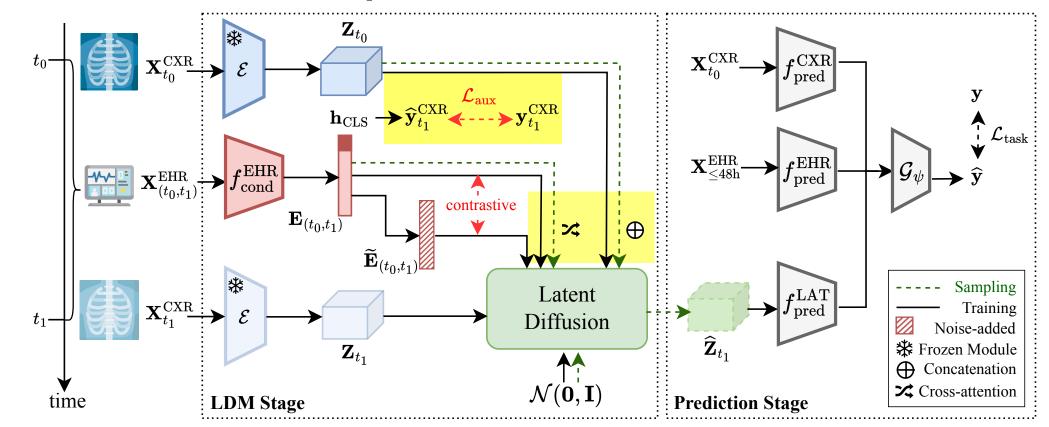
mortality prediction,

phenotype classification

Excel in individual CXR

generation

The Proposed Method: DDL-CXR



LDM stage: dynamic latent CXR generation

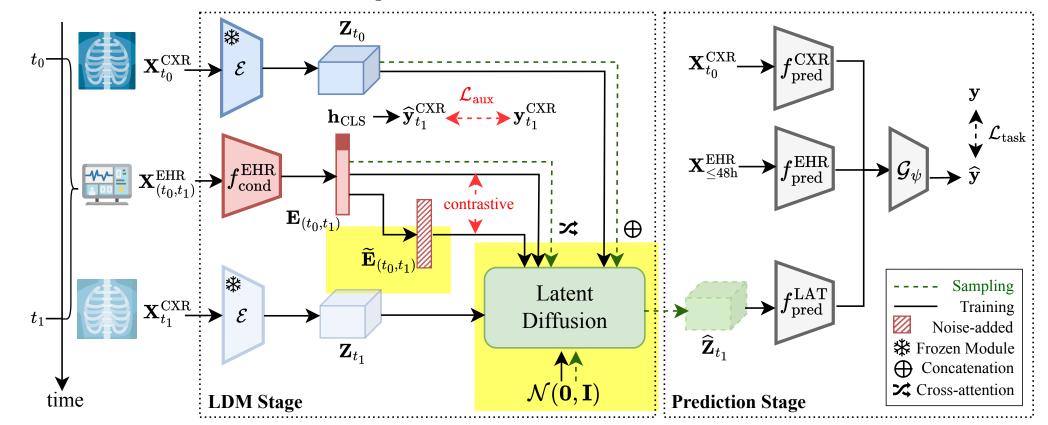
Conditioning mechanisms

$$ext{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = ext{softmax} \left(rac{\mathbf{Q}\mathbf{K}^{ op}}{\sqrt{d}}
ight) \cdot \mathbf{V},$$

with $\mathbf{Q} = \mathbf{W}_Q \cdot arphi \left(\mathbf{Z}_{t_1}^{(n)} || \mathbf{Z}_{t_0}
ight), \mathbf{K} = \mathbf{W}_K \cdot f_{ ext{cond}}^{ ext{EHR}}(\mathbf{X}_{(t_0, t_1)}^{ ext{EHR}}), \mathbf{V} = \mathbf{W}_V \cdot f_{ ext{cond}}^{ ext{EHR}}(\mathbf{X}_{(t_0, t_1)}^{ ext{EHR}})$

Capturing disease course via EHR time series:
$$\mathcal{L}_{aux} := \frac{1}{M} \frac{1}{L} \sum_{m=1}^{M} \sum_{l=1}^{L} y_{ml}^{CXR} \log(\widehat{y}_{ml}^{CXR}) + (1 - y_{ml}^{CXR}) \log(1 - \widehat{y}_{ml}^{CXR})$$

The Proposed Method: DDL-CXR



LDM stage: dynamic latent CXR generation

Enhancing semantic multimodal fusion via contrastive LDM learning: $\widetilde{\mathbf{E}}_{(t_0,t_1)} = (1-\beta)\mathbf{E}_{(t_0,t_1)} + \beta\boldsymbol{\delta}, \text{ where } \boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ LDM training loss: $\mathcal{L}_{\text{LDM}} := \mathbb{E}_{\mathbf{Z}_{t_1},\mathbf{Z}_{t_0},\mathbf{X}_{(t_0,t_1)}^{\text{EHR}},\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I}), n} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\mathbf{Z}_{t_1}^{(n)}, \mathbf{Z}_{t_0}, f_{\text{cond}}^{\text{EHR}}(\mathbf{X}_{(t_0,t_1)}^{\text{EHR}}), n \right) \right\|_{2}^{2} + \lambda_{1} \max \left(\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\mathbf{Z}_{t_1}^{(n)}, \mathbf{Z}_{t_0}, \mathbf{E}_{(t_0,t_1)}, n \right) \right\|_{2}^{2} - \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\mathbf{Z}_{t_1}^{(n)}, \mathbf{Z}_{t_0}, \widetilde{\mathbf{E}}_{(t_0,t_1)}, n \right) \right\|_{2}^{2} + \alpha, 0 \right) \right\|_{2}^{2} = 1$

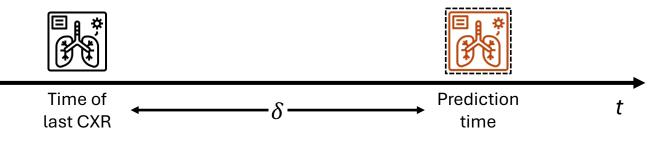
Results – Clinical Prediction (overall performance)

	Phenotyping		Mortality	
	AUPRC	AUROC	AUPRC	AUROC
Uni-EHR [23]	0.434 ± 0.009	0.720 ± 0.006	0.498 ± 0.007	0.815 ± 0.007
MMTM [52]	0.430 ± 0.005	0.715 ± 0.003	0.422 ± 0.014	0.785 ± 0.004
DAFT [9]	0.435 ± 0.002	0.720 ± 0.003	0.448 ± 0.004	0.800 ± 0.003
MedFuse [10]	0.437 ± 0.001	0.718 ± 0.002	0.443 ± 0.009	0.793 ± 0.003
DrFuse [13]	0.459 ± 0.003	0.729 ± 0.004	0.460 ± 0.004	0.773 ± 0.008
GAN-based [53]	0.453 ± 0.010	0.728 ± 0.008	0.505 ± 0.018	0.816 ± 0.010
DDL-CXR (ours)	$\textbf{0.470} \pm 0.003$	$\textbf{0.740} \pm 0.002$	$\textbf{0.523} \pm 0.011$	$\textbf{0.822} \pm 0.009$

DDL-CXR obtains the best overall performance

- Generating an updated CXR is beneficial for prediction.
- Performance gain in terms of AUPRC: identifying the positive class in imbalanced medical datasets.
- Relative improvements: 2.4% (phenotype classification); 3.56% (mortality prediction)

Results – Mortality prediction with varying time interval



 δ increases Last-CXR: more "outdated"

• Dynamic generation - different ranges of δ : time interval (hour) between the prediction time and the time of last CXR.

prevalence	Overall 14.7%	$\delta < 12$ 16.6%	$\begin{array}{c} 12 \leq \delta < 24 \\ 19\% \end{array}$	$\begin{array}{c} 24 \leq \delta < 36 \\ 15.9\% \end{array}$	$\delta \geq 36$ 9.26%
Uni-EHR [23] MMTM [52] DAFT [9] MedFuse [10] DrFuse [13] GAN-based [53]	$\begin{array}{c} 0.815 \pm 0.007 \\ 0.785 \pm 0.004 \\ 0.800 \pm 0.003 \\ 0.793 \pm 0.003 \\ 0.773 \pm 0.008 \\ 0.816 \pm 0.010 \end{array}$	$\begin{array}{c} 0.854 \pm 0.010 \\ 0.798 \pm 0.008 \\ 0.803 \pm 0.010 \\ 0.812 \pm 0.004 \\ 0.802 \pm 0.012 \\ 0.846 \pm 0.010 \end{array}$	$\begin{array}{c} 0.799 \pm 0.013 \\ 0.763 \pm 0.004 \\ 0.782 \pm 0.009 \\ 0.762 \pm 0.007 \\ 0.717 \pm 0.023 \\ \textbf{0.800} \pm 0.011 \end{array}$	$\begin{array}{c} 0.756 \pm 0.019 \\ 0.760 \pm 0.012 \\ \textbf{0.776} \pm 0.006 \\ 0.760 \pm 0.009 \\ 0.757 \pm 0.041 \\ 0.760 \pm 0.026 \end{array}$	$\begin{array}{c} 0.772 \pm \! 0.014 \\ 0.796 \pm \! 0.008 \\ 0.800 \pm \! 0.010 \\ 0.723 \pm \! 0.013 \end{array}$
DDL-CXR (ours)	$\textbf{0.822} \pm 0.009$	$\textbf{0.867} \pm 0.015$	$\textbf{0.800} \pm 0.008$	0.753 ±0.015	0.830 ±0.011

• DDL-CXR receives a noticeable performance increase (in AUROC) when $\delta \geq 36h$.

More details can be found at

Project Page

ArXiv

Poster session: Dec 12, 4:30pm – 7:30pm

Thank you!