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Offline Imitation Learning with Supplementary demonstrations

✓Leverage expert demonstrations and additional data.

✓Working completely Offline.

✓Reduce the number of expert demonstrations.

✓Enhance generalization.

expert demonstrations

Larger Supplementary 

Demonstrations
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Unlabeled mixed dataset

expert dataset

Existing 

methods

Remove all non-expert demonstrations

Motivation - Existing methods
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SPRINQL

Learning from all demonstrations

SPRINQL Idea

Reduce the number of dataset
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Sub-optimal Demonstration driven 

Offline Imitation Learning
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Imitation Learning with multiple expertise levels

• Given several sets of different expertise levels 𝒟1 > 𝒟2 > ⋯ > 𝒟𝑁, 
we have: 

𝔼𝜌1 𝑟
∗(𝑠, 𝑎) > 𝔼𝜌2 𝑟

∗(𝑠, 𝑎) > ⋯ > 𝔼𝜌𝑁 𝑟∗ 𝑠, 𝑎 ,

where 𝜌𝑘 is the occupancy measures of expertise level 𝑘 policy, and 
𝑟∗(. , . ) is the ground-truth rewards.

• The the expert level dataset significant smaller than others
𝒟1 ≪ 𝒟𝑖
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SPRINQL – MaxEnt IRL for distribution matching

We formulate the Max Entropy Inversed RL [1] for multiple levels:

where            is the weight of expertise level 𝑖:
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SPRINQL – MaxEnt IRL for distribution matching

To simplify, the objective can be rewritten as:

Where 

However, the dataset of expert-level is sufficient small, leading to 
inaccurate 𝔼𝜌1 𝑟(𝑠, 𝑎)  estimation.
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SPRINQL – reward regularization with reference reward

We define a reference reward function ҧ𝑟 that:

Combine with the MaxEnt IRL objective:
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SPRINQL – Inverse Soft-Q with reward regularization

We transform the objective into Q-space (IQ-learn [2]):

Where 𝑟(𝑠, 𝑎) is replaced by

However, this new objective do not have a unique saddle point as 
IQ-learn.
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SPRINQL – final objective

We arrive at a final objective that retains desirable properties from 
the original IQ-Learn (proofs provided in the paper).
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SPRINQL – Estimate reference reward function

We automatically learn the reference rewards ҧ𝑟:

Where                                                  is Bradley-Terry model of 
preferences.
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In the occupancy matching term, we assign a weight parameter to 
each expertise level, which should reflect the quality of that level:

14

SPRINQL – Preference-based Weight Learning
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CQL [3] is added into the objective to overcome the out-of-
distribution actions problem:

15

SPRINQL – Conservative soft-Q learning
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Experiments
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We compare our method against several baselines:

• BC, IQ [2] (-E, -O, -both): Offline imitation learning variants using only 
expert data (-E), only sub-optimal data (-O), and both expert and sub-
optimal data (-both).

• W-BC: Weighted Behavioral Cloning, which applies preference-based 
weights to the datasets.

We compare with state-of-the-art offline imitation learning methods that 
leverage supplementary demonstrations:

• TRAIL [4]

• DemoDICE [5]

• DWBC [6]

17

Experiments - Baselines
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We compare SPRINQL with other algorithms in 3 level dataset scenario

In Mujoco [7] and Panda-gym [8] environment:

18

Experiments - Main Comparison Results
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In this experiment, we test the importance of two term of our objective:

19

Importance of Distribution Matching and Reward Regularizer
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Moreover, in our paper, we conduct a comprehensive set of experiments to address 
the following questions:

• (Q3) What happens if we augment (or reduce) the expert data while maintaining the sub-
optimal datasets? 

• (Q4) What happens if we augment (or reduce) the sub-optimal data while maintaining the 
expert dataset? 

• (Q5) How does the conservative term help in our approach? 

• (Q6) How does increasing N (the number of expertise levels) affect the performance of 
SPRINQL? 

• (Q7) Does the preference-based weight learning approach provide good values for the 
weights? 

• (Q8) How does SPRINQL perform in recovering the ground-truth reward function?

20

Other experiment concerns
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Conclusion

• SPRINQL is offline imitation learning for ranked datasets.

• SPRINQL have several favorable properties, contributing to its well-
behaved, stable, and scalable nature.

• SPRINQL can utilize all expertise datasets instead of remove sub-
optimals.

Limitation:

• lack of theoretical investigation on how the sizes of the expert and non-
expert datasets affect the performance of Q-learning.

• lacks a theoretical exploration of how the reward regularizer term 
enhances the distribution matching term when expert samples are low.
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