

School of Computing and Information Systems

SPRINQL: Sub-optimal Demonstrations driven Offline Imitation Learning

Huy Hoang, Tien Mai, Pradeep Varakantham Singapore Management University

Offline Imitation Learning With Supplementary Demonstrations

Offline Imitation Learning with Supplementary demonstrations

Leverage expert demonstrations and additional data.

- ✓ Working completely Offline.
- ✓ Reduce the number of expert demonstrations.
- ✓ Enhance generalization.

Motivation - Existing methods

Existing methods

SPRINQL Idea

Sub-optimal Demonstration driven Offline Imitation Learning

Imitation Learning with multiple expertise levels

Given several sets of different expertise levels D¹ > D² > ··· > D^N, we have:

$$\mathbb{E}_{\rho^{1}}[r^{*}(s,a)] > \mathbb{E}_{\rho^{2}}[r^{*}(s,a)] > \dots > \mathbb{E}_{\rho^{N}}[r^{*}(s,a)],$$

where ρ^k is the occupancy measures of expertise level k policy, and $r^*(.,.)$ is the ground-truth rewards.

- The the expert level dataset significant smaller than others $\|\mathcal{D}^1\| \ll \|\mathcal{D}^i\|$

SPRINQL – MaxEnt IRL for distribution matching

We formulate the Max Entropy Inversed RL [1] for multiple levels:

$$\max_{r} \min_{\pi} \sum_{i \in [N]} w_i \mathbb{E}_{\rho^i} [r(s, a)] - \mathbb{E}_{\rho_{\pi}} [r(s, a)] + \mathbb{E}_{\rho_{\pi}} [\log \pi(s, a)]$$

where $w_i \ge 0$ is the weight of expertise level *i*:

$$w_1 > w_2 > \dots > w_N$$

 $\sum_{i \in [N]} w_i = 1$

SPRINQL – MaxEnt IRL for distribution matching

To simplify, the objective can be rewritten as:

$$\mathbb{E}_{\rho^{U}}[r(s,a)] - \mathbb{E}_{\rho_{\pi}}[r(s,a)] - \mathbb{E}_{\rho_{\pi}}[\log \pi(s,a)],$$

Where
$$ho^U = \sum_{i \in [N]} w_i
ho^i$$
 .

However, the dataset of expert-level is sufficient small, leading to inaccurate $\mathbb{E}_{\rho^1}[r(s,a)]$ estimation.

SPRINQL – reward regularization with reference reward

We define a reference reward function \bar{r} that: $\bar{r}(s,a) > \bar{r}(s',a'), \forall (s,a) \in \mathcal{D}^1 \text{ and } (s',a') \notin \mathcal{D}^1 \text{ and}$ $\bar{r}(s,a) > \bar{r}(s',a'), \forall (s,a) \in \mathcal{D}^2 \text{ and } \forall (s',a') \notin \mathcal{D}^2 \cup \mathcal{D}^1 \text{ and so on}$

Combine with the MaxEnt IRL objective: $\max_{r} \min_{\pi} \left\{ \underbrace{\mathbb{E}_{\rho^{U}}[r(s,a)] - \mathbb{E}_{\rho_{\pi}}[r(s,a)] + \mathbb{E}_{\rho_{\pi}}[\log \pi(s,a)]}_{\text{Occupancy matching}} - \underbrace{\alpha \mathbb{E}_{\rho^{U}}[(r(s,a) - \overline{r}(s,a))^{2}]}_{\text{Reward regularizer}} \right\}$

SPRINQL – Inverse Soft-Q with reward regularization

We transform the objective into Q-space (IQ-learn [2]):

 $\max_{Q} \min_{\pi} \left\{ \mathcal{H}(Q,\pi) \stackrel{def}{=} \mathbb{E}_{\rho^{U}} [\mathcal{T}^{\pi}[Q](s,a))] - \mathbb{E}_{\rho_{\pi}} [\mathcal{T}^{\pi}[Q](s,a))] + \mathbb{E}_{\rho_{\pi}} [\log \pi(s,a)] - \alpha \mathbb{E}_{\rho^{U}} [(\mathcal{T}^{\pi}[Q](s,a)) - \overline{r}(s,a))^{2}] \right\}$

Where r(s, a) is replaced by $\mathcal{T}^{\pi}[Q](s, a)$

 $\mathcal{T}^{\pi}[Q](s,a) = Q(s,a) - \gamma \mathbb{E}_{s'}[V^{\pi}(s')], \ V^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[Q(s,a) - \log \pi(a|s)]$

However, this new objective do not have a unique saddle point as IQ-learn.

SPRINQL – final objective

We arrive at a final objective that retains desirable properties from the original IQ-Learn (proofs provided in the paper).

$$\begin{aligned} \widehat{\mathcal{H}}(Q,\pi) &\stackrel{def}{=} \sum_{i \in [N]} w_i \mathbb{E}_{\rho^i} [\mathcal{T}^{\pi}[Q](s,a))] - (\mathbb{E}_{\rho_{\pi}}[\mathcal{T}^{\pi}[Q](s,a))] - \mathbb{E}_{\rho_{\pi}}[\log \pi(s,a)]) \\ - \alpha \mathbb{E}_{\rho^U} \Big[(Q(s,a) - \overline{r}(s,a))^2 + (\mathbb{E}_{s'}V^{\pi}(s'))^2 + 2\text{ReLU}(\overline{r}(s,a) - Q(s,a))\mathbb{E}_{s'}V^{\pi}(s') \Big] \end{aligned}$$

SPRINQL – Estimate reference reward function

We automatically learn the reference rewards \bar{r} :

$$\min_{\overline{r}} \{ \mathcal{L}(\overline{r}) = \sum_{i \in [N]} \sum_{(s,a), (s',a') \in \mathcal{D}^i} (\overline{r}(s,a) - \overline{r}(s',a'))^2 - \sum_{h,k \in [N], h > k, \tau_i \in \mathcal{D}^h, \tau_j \in \mathcal{D}^k} \ln P(\tau_i \prec \tau_j) \}$$

Where $P(\tau_i \prec \tau_j) = \frac{\exp(R(\tau_j))}{\exp(R(\tau_i)) + \exp(R(\tau_j))}$ is Bradley-Terry model of preferences.

SPRINQL – Preference-based Weight Learning

In the occupancy matching term, we assign a weight parameter to each expertise level, which should reflect the quality of that level:

$$w_i = \frac{\mathbb{E}_{(s,a)\sim D^i}[\bar{r}(s,a)]}{\sum_{j\in[N]}\mathbb{E}_{(s,a)\sim D^j}[\bar{r}(s,a)]}$$

SPRINQL – Conservative soft-Q learning

CQL [3] is added into the objective to overcome the out-ofdistribution actions problem:

$$\widehat{\mathcal{H}}^{C}(Q,\pi) = -\beta \sum_{s \sim \mathcal{D}, \ a \sim \mu(a|s)} [Q(s,a)] + \widehat{\mathcal{H}}(Q,\pi)$$

Experiments

Experiments - Baselines

We compare our method against several baselines:

- BC, IQ [2] (-E, -O, -both): Offline imitation learning variants using only expert data (-E), only sub-optimal data (-O), and both expert and sub-optimal data (-both).
- W-BC: Weighted Behavioral Cloning, which applies preference-based weights to the datasets.

We compare with state-of-the-art offline imitation learning methods that leverage supplementary demonstrations:

- TRAIL [4]
- DemoDICE [5]
- **DWBC** [6]

Experiments - Main Comparison Results

We compare SPRINQL with other algorithms in 3 level dataset scenario In Mujoco [7] and Panda-gym [8] environment:

	Mujoco			Panda-gym			
	Cheetah	Ant	Humanoid	Push	PnP	Slide	Avg
BC-E	$-3.2{\pm}0.9$	6.4±19.1	1.3±0.2	8.2±3.8	3.7±2.7	$0.0{\pm}0.0$	2.7
BC-O	14.2 ± 2.9	$35.2{\pm}20.1$	10.6 ± 6.3	$8.8{\pm}4.5$	$3.9{\pm}2.7$	0.1 ± 0.3	12.1
BC-both	13.2 ± 3.6	$47.0{\pm}5.9$	$9.0{\pm}3.5$	9.0±4.3	$4.4{\pm}3.0$	$0.1{\pm}0.4$	13.8
W-BC	$12.9 {\pm} 2.8$	47.3 ± 6.4	$19.6 {\pm} 19.0$	8.8±4.3	$3.7{\pm}2.8$	$0.0{\pm}0.0$	15.4
TRAIL	-4.1 ± 0.3	-4.7 ± 1.9	$2.6{\pm}0.6$	11.7 ± 4.0	7.8 ± 3.7	$1.7{\pm}1.8$	3.9
IQ-E	$-3.4{\pm}0.6$	$-3.4{\pm}1.3$	$2.4{\pm}0.6$	26.3 ± 10.9	18.1 ± 12.5	$0.1{\pm}0.4$	6.7
IQ-both	-6.1±1.4	-58.2 ± 0.0	$0.8{\pm}0.0$	8.3±3.9	3.8 ± 3.3	$0.0{\pm}0.2$	-8.6
SQIL-E	-5.0 ± 0.7	-33.8 ± 7.4	$0.9{\pm}0.1$	9.6±3.3	$3.2{\pm}2.9$	0.1 ± 0.3	-4.2
SQIL-both	-5.6 ± 0.5	-58.0 ± 0.4	$0.8{\pm}0.0$	8.2 ± 3.8	$3.3{\pm}2.3$	0.1 ± 0.3	-12.6
DemoDICE	$0.4{\pm}2.0$	31.7 ± 8.9	$2.6{\pm}0.8$	8.1 ± 3.7	4.3 ± 2.4	$0.1{\pm}0.5$	7.9
DWBC	-0.2 ± 2.5	10.4 ± 5.0	$3.7{\pm}0.3$	36.9±7.4	25.0±6.3	11.6 ± 4.4	14.6
SPRINQL (ours)	73.6±4.3	77.0±5.6	82.9±11.2	72.0±5.3	63.2±6.4	37.7±6.6	67.7

Importance of Distribution Matching and Reward Regularizer

In this experiment, we test the importance of two term of our objective:

Other experiment concerns

Moreover, in our paper, we conduct a comprehensive set of experiments to address the following questions:

- (Q3) What happens if we augment (or reduce) the expert data while maintaining the suboptimal datasets?
- (Q4) What happens if we augment (or reduce) the sub-optimal data while maintaining the expert dataset?
- (Q5) How does the conservative term help in our approach?
- (Q6) How does increasing N (the number of expertise levels) affect the performance of SPRINQL?
- (Q7) Does the preference-based weight learning approach provide good values for the weights?
- (Q8) How does SPRINQL perform in recovering the ground-truth reward function?

Conclusion

- SPRINQL is offline imitation learning for ranked datasets.
- SPRINQL have several favorable properties, contributing to its wellbehaved, stable, and scalable nature.
- SPRINQL can utilize all expertise datasets instead of remove suboptimals.

Limitation:

- lack of theoretical investigation on how the sizes of the expert and nonexpert datasets affect the performance of Q-learning.
- lacks a theoretical exploration of how the reward regularizer term enhances the distribution matching term when expert samples are low.

References

[1] Ziebart, Brian D., et al. "Maximum entropy inverse reinforcement learning." Aaai. Vol. 8. 2008.

[2] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn: Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:4028–4039, 2021.

[3] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[4] Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with suboptimal data. In International Conference on Learning Representations, 2021.

[5] Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok Yang, and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect demonstrations. In International Conference on Learning Representations, 2021.

[6] Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation learning from suboptimal demonstrations. In Proceedings of the 39th International Conference on Machine Learning, pages 24725–24742, 2022.

[7] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012.

[8] Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. pandagym: Open-source goalconditioned environments for robotic learning. arXiv preprint arXiv:2106.13687, 2021.