Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data

Jiaojiao Zhang¹, Jiang Hu², Anthony Man-cho So³, Mikael Johansson¹

¹KTH Royal Institute of Technology, ²University of California, Berkeley, ³The Chinese University of Hong Kong

Introduction

▶ Consider federated learning (FL) on manifolds

$$\underset{x \in \mathcal{M}}{\text{minimize}} \ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x), \quad f_i(x) = \frac{1}{m_i} \sum_{l=1}^{m_i} f_{il}(x; \mathcal{D}_{il})$$
(1)

- Each client has local loss f_i that is smooth but nonconvex
- Local datasets \mathcal{D}_i across clients i are heterogeneous
- \mathcal{M} is a compact smooth submanifold embedded in $\mathbb{R}^{d \times k}$, with Euclidean metric serving as its Riemannian metric. E.g., Stiefel manifold: $\operatorname{St}(d,k) = \{x \in \mathbb{R}^{d \times k} : x^T x = I_k\}$

Figure: Optimization on manifolds

Challenges

- \blacktriangleright Single-machine optimization on $\mathcal M$ cannot be directly adapted to FL
 - Even if each local model lies on $\mathcal M,$ their average typically does not
- ▶ Extending FL algorithms to manifold optimization is not straightforward
 - ${\mathcal M}$ is nonconvex
- \blacktriangleright FL algorithms with local updates need substantial modifications to accommodate $\mathcal M$
 - · Client drift issue due to local updates and heterogeneous data persists

Contributions

- ▶ Propose a computation- and communication-efficient algorithm for solving (1)
- Establish sub-linear convergence to a neighborhood of a first-order optimal solution
- Demonstrate superior performance over alternative methods

Algorithm Intuition and Innovations

▶ The equivalent and compact form of our algorithm is

$$\begin{cases} \hat{\mathbf{z}}_{t+1}^{r} = \hat{\mathbf{z}}_{t}^{r} - \eta \Big(\underbrace{\operatorname{gradf}\left(\mathbf{z}_{t}^{r}; \mathcal{B}_{t}^{r}\right)}_{\mathsf{new}} + \underbrace{\frac{1}{\tau} \sum_{t=0}^{\tau-1} \overline{\operatorname{gradf}}\left(\mathbf{z}_{t}^{r-1}; \mathcal{B}_{t}^{r-1}\right)}_{\operatorname{average}} - \underbrace{\frac{1}{\tau} \sum_{t=0}^{\tau-1} \operatorname{gradf}\left(\mathbf{z}_{t}^{r-1}; \mathcal{B}_{t}^{r-1}\right)}_{\mathsf{old}} \Big) \\ \mathbf{z}_{t+1}^{r} = \mathcal{P}_{\mathcal{M}}\left(\hat{\mathbf{z}}_{t+1}^{r}\right) \\ \mathbf{x}^{r+1} = \mathcal{P}_{\mathcal{M}}(\mathbf{x}^{r}) - \eta_{g}\eta \sum_{t=0}^{\tau-1} \overline{\operatorname{gradf}}\left(\mathbf{z}_{t}^{r}; \mathcal{B}_{t}^{r}\right) \end{cases}$$

Mimic centralized projected Riemannian gradient descent

- $\bullet \ \ \, \text{When} \ \tau=1 \ \text{and} \ b=m_i, \ \text{we recover} \ \tilde{x}^{r+1}:=\mathcal{P}_{\mathcal{M}}\Big(\mathcal{P}_{\mathcal{M}}(\overline{x}^r)-\tilde{\eta}\cdot \mathrm{grad}f(\mathcal{P}_{\mathcal{M}}(\overline{x}^r))\Big)$
- \blacktriangleright Feasibility of all iterates at a low computational cost by using $\mathcal{P}_{\mathcal{M}}$
 - · Avoid exponential mapping, inverse exponential mapping, and parallel transport
- Overcome client drift
 - · Correction employs "variance reduction" and does not incur extra communication

1: Input: $R, \tau, \eta, \eta_a, \tilde{\eta} = \eta \eta_a \tau, \overline{x}^1$, and $c_i^1 = 0$ for all $i \in [n]$ 2: for $r = 1, 2, ..., \bar{R}$ do 3: Client *i* Set $\hat{z}_{i,0}^r = \mathcal{P}_{\mathcal{M}}(\overline{x}^r)$ and $z_{i,0}^r = \mathcal{P}_{\mathcal{M}}(\overline{x}^r)$ 4: for $t = 0, 1, ..., \tau - 1$ do 5: Sample a mini-batch dataset $\mathcal{B}_{i,t}^r \subset \mathbf{D}_i$ with $|\mathcal{B}_{i,t}^r| = b$ 6: Update $\operatorname{grad} f_i(z_{i,t}^r; \mathcal{B}_{i,t}^r) = \frac{1}{b} \sum_{\mathbf{D}_{i,t} \in \mathcal{B}^r} \operatorname{grad} f_{il}(z_{i,t}^r; \mathbf{D}_{il})$ 7: Update $\hat{z}_{i,t+1}^r = \hat{z}_{i,t}^r - \eta \left(\operatorname{grad} f_i(z_{i,t}^r; \mathcal{B}_{i,t}^r) + c_i^r \right)$ 8: Update $z_{i,t+1}^r = \mathcal{P}_{\mathcal{M}}(\hat{z}_{i,t+1}^r)$ 9: 10: end for Send \hat{z}_{i} to the server 11: 12: Server Update $\overline{x}^{r+1} = \mathcal{P}_{\mathcal{M}}(\overline{x}^r) + \eta_q \left(\frac{1}{n} \sum_{i=1}^n \hat{z}_{i,\tau}^r - \mathcal{P}_{\mathcal{M}}(\overline{x}^r)\right)$ 13: Broadcast \overline{x}^{r+1} to all the clients 14: Client *i* 15: Update $c_i^{r+1} = \frac{1}{n_- n \tau} (\mathcal{P}_{\mathcal{M}}(\overline{x}^r) - \overline{x}^{r+1}) - \frac{1}{\tau} \sum_{i=0}^{\tau-1} \operatorname{grad} f_i(z_{i,t}^r; \mathcal{B}_{i,t}^r)$ 16: 17: end for 18: **Output:** $\mathcal{P}_{\mathcal{M}}(\overline{x}^{R+1})$

Definitions

• (Riemannian gradient): The Riemannian gradient grad f(x) of a function f at the point $x \in \mathcal{M}$ is the unique tangent vector that satisfies

$$\left\langle \mathrm{grad} f(x), \xi \right\rangle_x = df(x)[\xi], \quad \forall \xi \in T_x \mathcal{M}$$

- For a submanifold $\mathcal M,\,\mathrm{grad}f(x)$ can be computed as $\mathrm{grad}f(x)=\mathcal P_{T_x\mathcal M}(\nabla f(x))$

- ($\hat{\gamma}$ -proximal smoothness of \mathcal{M}): The $\hat{\gamma}$ -tube around \mathcal{M} is $U_{\mathcal{M}}(\hat{\gamma}) := \{x : \operatorname{dist}(x, \mathcal{M}) < \hat{\gamma}\}$. We say that \mathcal{M} is $\hat{\gamma}$ -proximally smooth if the projection operator $\mathcal{P}_{\mathcal{M}}(x)$ is a singleton whenever $x \in U_{\mathcal{M}}(\hat{\gamma})$
 - Any compact smooth submanifold $\mathcal M$ embedded in $\mathbb R^{d\times k}$ is a proximally smooth set
 - Ensure not only the uniqueness of the projection but also the Lipschitz continuity of $\mathcal{P}_{\mathcal{M}}$

$$\|\mathcal{P}_{\mathcal{M}}(x)-\mathcal{P}_{\mathcal{M}}(y)\|\leq 2\|x-y\|, \ \, \forall x,y\in \overline{U}_{\mathcal{M}}(\hat{\gamma}/2)$$

Assumptions

- \blacktriangleright The proximal smoothness constant of ${\mathcal M}$ is 2γ
- $\blacktriangleright \ L\text{-smoothness:} \ \|\text{grad}f_{il}(x;\mathcal{D}_{il}) \text{grad}f_{il}(y;\mathcal{D}_{il})\| \leq L\|x-y\|$
- Unbiasedness and bounded variance: $\mathbb{E}[\|\operatorname{grad} f_i(z_{i,t}^r; \mathcal{B}_{i,t}^r) \operatorname{grad} f_i(z_{i,t}^r)\|^2 | \mathcal{F}_t^r] \leq \sigma^2/b$ (Theorem) Under some assumptions and conditions on $\tilde{\eta} := \eta \tau \eta_q$, we have

$$\frac{1}{R}\sum_{r=1}^R \mathbb{E}\|\mathcal{G}_{\tilde{\eta}}(\mathcal{P}_{\mathcal{M}}(\overline{x}^r))\|^2 \leq \mathcal{O}\left(\frac{1}{\sqrt{n}\tau R\eta} + \frac{\sigma^2}{n\tau b}\right)$$

where $\mathcal{G}_{\tilde{\eta}}(\mathcal{P}_{\mathcal{M}}(x^r)):=(\mathcal{P}_{\mathcal{M}}(x^r)-\tilde{x}^{r+1})/\tilde{\eta}$

Numerical Experiments

▶ kPCA problem with Mnist dataset

Figure: Comparison with alternative methods (1st row) and impacts of batch size (2nd row)