

Motif-oriented influence maximization for viral marketing in large-scale social networks

Authors: Mingyang Zhou, Weiji Cao, Hao Liao and Rui Mao

Shenzhen University

zmy@szu.edu.cn(M.Y. Zhou), haoliao@szu.edu.cn(H. Liao)

Motivation

Examples:

- a. A motif of k friends dine together and choose a if more than half users agree.
- b. When determining whether to purchase a KFC Family Bucket, every family member must consent to consume KFC.
- c. Farmigo platform offers services for group customers when a specific number of members purchase the foods.

Motif activation: A motif is activated if more than r_i nodes in the motif are activated; otherwise the motif is inactive. Problem Definition: Given a graph *G*, a cascade model \mathbb{C} , and an integer *k*, the Motif-Oriented Influence Maximization (MOIM) asks for a size-*k* seed set with the largest expected activated motifs, i.e.,

 $S_k = argmax_{S:|S|=k} \mathbb{I}^{\mathfrak{g}}_{\mathbb{C}}(S).$

(c)

Method

Fig. 2 : (a) An example of a graph containing only one motif. (b) A super node example(labeled a) . (c) 5-spanning tree example (see blue edges).

Algorithm 1: NodeSelection (G, θ, k) .

```
1 Initialize a node set S_k^* = \emptyset;
```

2 for $i = 1 : \theta$ do

- 3 Randomly choose a super node v with probability $\frac{w_v}{n}$;
- Generate a RR set R_i starting from node v;
- 5 Insert R_i to \mathcal{R} ;

6 end

7 for i = 1 : k do

8 | Identify the node v that maximizes the marginal coverage of \mathcal{R} , $F_R(S_k^* \cup \{v\}) - F_R(S_k^*)$;

9 | Insert v into S_k^* ;

10 **end**

11 return \mathcal{S}_k^* ;

Method ($r_i = 1$): Add a super node T_i connecting each motif.

Expectation of activated super nodes $(r_i = 1)$ $\bar{f}(S) = \mathbb{I}^{g}_{\mathbb{C}}(S) = \mathbb{E}_{\mathbb{C}}[\sum_{a \in T} \omega_i \cdot \mu(a)].$

Lower bound $(r_i > 1)$: $\underline{f_2}(S) = \tau \cdot \overline{f}(S)$, τ is a constant.

Upper bound $(r_i > 1)$: $\overline{f}(S)$.

Proof: see the manuscript.

Results

Fig. 3: Expected motif influence vs. k under LT model, $r_i = 1$ and motif size being 2.

Fig. 4: Expected motif influence vs. k under LT model, $r_i = 1$ and motif size being 3.

Fig. 5: Expected motif influence vs. k under LT model. (a) Motif size 2 and $r_i = 2$. (b) Motif size 3 and $r_i = 3$. (c) Half motifs have size 2 and $r_i = 2$, whereas the other half motifs have size 3 and $r_i = 3$.

Thank you!

zmy@szu.edu.cn(M.Y. Zhou), haoliao@szu.edu.cn(H. Liao)