

Unifying Homophily and Heterophily for Spectral Graph Neural Networks via Triple Filter Ensembles

Rui Duan, Mingjian Guang, Junli Wang, Chungang Yan, Hongda Qi, Wenkang Su, Can Tian, Haoran Yang

Polynomial-based learnable spectral graph neural networks

The source code of GEN is publicly available at https://github.com/graphNN/TFEGNN

Three Progressive Problems:

1. Some models use polynomials with better approximation for approximating filters, yet perform worse on real-world graphs.

2. Carefully crafted graph learning methods, sophisticated polynomial approximations, and refined coefficient constraints leaded to overfitting, which diminishes the generalization of the models.

3. How to design a model that retains the ability of polynomial-based spectral GNNs to approximate filters while it possesses higher generalization and performance?

Motivations and Contributions:

Inspired by the following properties of ensemble learning: the strong classifier determined by the base classifiers can be more accurate than any of them if the base classifiers are accurate and diverse; and this strong classifier retains the characteristics of the base classifier to some extent. First, we combine a set of weak base low-pass f ilter to determine a strong low-pass filter that can extract homophily. Then, we use the same method to extract heterophily.

- We propose a spectral GNN with triple filter ensemble (TFE-GNN), which extracts ho mophily and heterophily from graphs with different levels of homophily adaptively while utilizing the initial features.
- The key difference between TFE-GNN and prior models is that TFE-GNN retains the ability of polynomial-based spectral GNNs while getting rid of polynomial computations, coefficient constraints, and specific scenarios.

Theoretical Analysis:

Theorem 1. *TFE-GNN and ChebNet can be transformed into each other under the following conditions, (1) learning the proper coefficients* ω , ω' , ϑ and *ChebNet' coefficient* θ , (2) the ensemble methods EM_1 , EM_2 and EM_3 take **summation**, the base high-pass filter H_{hp} takes the symmetric normalized Laplacian L_{sym} and the base low-pass filter H_{lp} takes the affinity (transition) matrix of L_{sym} , and (3) $K_{hp} = K_{lp} = K - 1$. Thus, *TFE-GNN can also learn arbitrary filters*.

Theorem 2. TFE-GNN can be rewritten in the following form, with certain conditions to be satisfied, which is a combination of two polynomial-based learnable spectral GNNs: $Z^* =$ $softmax(f_{mlp}(\vartheta_1 \sum_{k=0}^{K'} \bar{\theta}_k^1 P_k^1 (\bar{H}_{gf}^1)^k X \bigoplus \vartheta_2 \sum_{k=0}^{K''} \bar{\theta}_k^2 P_k^2 (\bar{H}_{gf}^2)^k X))$, where P_k denote polynomials used for approximation, $\bar{\theta}$ are the learnable coefficients, \bar{H}_{gf} denote graph filters, and \bigoplus denotes EM_3 . Conditions are (1) learning the proper coefficients $\omega, \omega', \vartheta, \bar{\theta}^1$, and $\bar{\theta}^2$, (2) the ensemble methods EM_1 , EM_2 take summation and EM_3 takes ensemble method capable of preserving the properties of the model, such as summation and concatenation, the base high-pass filter H_{hp} takes \bar{H}_{gf}^2 and the base low-pass filter H_{lp} takes \bar{H}_{gf}^1 , and (3) $K_{lp} = K'$ and $K_{hp} = K''$. Thus, TFE-GNN can match various graph structures adaptively.

Experiments:

DATASETS	CORA	CITESEER	PUBMED	CS	PHYSICS
ehr	0.81	0.74	0.80	0.81	0.93
MLP	$76.89 {\pm} 0.97$	$76.52{\pm}0.89$	86.14±0.25	94.76±0.51	$96.52{\pm}0.66$
GCNs	$87.18 {\pm} 1.12$	$79.85 {\pm} 0.78$	$86.79 {\pm} 0.31$	$93.11 {\pm} 0.19$	$96.66 {\pm} 0.74$
ARMA	$87.13 {\pm} 0.80$	$80.04 {\pm} 0.55$	$86.93 {\pm} 0.24$	$92.14{\pm}0.35$	$95.11 {\pm} 0.19$
APPNP	$88.16 {\pm} 0.74$	$80.47 {\pm} 0.73$	$88.13 {\pm} 0.33$	$92.61 {\pm} 0.28$	$95.81 {\pm} 0.11$
ChebNet	$87.32 {\pm} 0.92$	$79.33 {\pm} 0.57$	$87.82 {\pm} 0.24$	$91.63 {\pm} 0.39$	$94.21 {\pm} 0.26$
GPR-GNN	$88.54 {\pm} 0.67$	$80.13 {\pm} 0.84$	$88.46 {\pm} 0.31$	$95.67 {\pm} 0.16$	$96.80 {\pm} 0.08$
BernNet	$88.51 {\pm} 0.92$	$80.08 {\pm} 0.75$	$88.51 {\pm} 0.39$	$95.81 {\pm} 0.13$	$96.81 {\pm} 0.07$
CHEBNETII	$88.71 {\pm} 0.93$	$80.53 {\pm} 0.79$	$88.93 {\pm} 0.29$	$96.03 {\pm} 0.11$	$97.23 {\pm} 0.07$
SPECFORMER	$88.57 {\pm} 1.01$	$81.49 {\pm} 0.94$	$89.13 {\pm} 0.35$	$95.92{\pm}0.19$	$97.44 {\pm} 0.08$
EvenNet	87.25 ± 1.42	$78.65 {\pm} 0.96$	$89.52 {\pm} 0.31$	$94.66 {\pm} 0.23$	$95.59 {\pm} 0.11$
Favard	$89.35 {\pm} 1.09$	$81.89 {\pm} 0.63$	$90.90 {\pm} 0.27$	$95.77 {\pm} 0.15$	$97.58 {\pm} 0.08$
PCNET	$90.02{\pm}0.62$	$81.76 {\pm} 0.78$	$91.30{\pm}0.38$	$96.33 {\pm} 0.15$	$97.62 {\pm} 0.08$
HALF-HOP	88.73±1.22	$80.33 {\pm} 0.66$	$89.86 {\pm} 0.36$	95.13±0.21	95.75±0.13
GCNII	$88.46 {\pm} 0.82$	$79.97 {\pm} 0.65$	$89.94 {\pm} 0.31$	$96.58 {\pm} 0.07$	$97.27 {\pm} 0.12$
TWIRLS	$88.57 {\pm} 0.91$	$80.07 {\pm} 0.94$	$88.87 {\pm} 0.43$	$95.43 {\pm} 0.04$	$97.17 {\pm} 0.07$
PDE-GCN	$88.62 {\pm} 1.03$	$79.98 {\pm} 0.97$	$89.92 {\pm} 0.38$	$95.35 {\pm} 0.19$	$96.89 {\pm} 0.08$
EGNN	87.47 ± 1.33	$80.51 {\pm} 0.93$	$88.74 {\pm} 0.46$	$95.22{\pm}0.20$	$96.61 {\pm} 0.08$
TFE-GNN _{con}	90.11 ± 1.27	$82.39 {\pm} 0.96$	$90.94{\pm}0.29$	93.55±1.56	$97.62 {\pm} 0.23$
TFE - GNN_{sum}	90.73±1.11	82.83±1.24	91.66±0.51	96.96±0.17	98.85±0.13
TFE-GNN $\langle TFE_1$	89.49 ± 1.30	$61.00{\pm}1.19$	$90.80 {\pm} 0.37$	$96.96{\pm}0.17$	$97.24{\pm}0.10$
TFE-GNN TFE_2	90.15 ± 1.75	$82.83 {\pm} 1.24$	$91.66 {\pm} 0.51$	$96.57 {\pm} 0.16$	$97.19 {\pm} 0.19$
$\mathrm{TFE} ext{-}\mathrm{GNN}_{rw+sum}$	$89.57 {\pm} 1.26$	$81.92{\pm}1.14$	$90.96 {\pm} 0.49$	$95.70{\pm}0.53$	$97.73 {\pm} 0.16$

Results:

DATASETS	CORA-FULL	CHAMELEON	SQUIRREL	WISCONSIN	TEXAS	CORNELL
ehr	0.57	0.23	0.22	0.21	0.06	0.30
MLP	52.45 ± 0.64	46.59 ± 1.84	31.01 ± 1.18	$86.55 {\pm} 2.36$	86.81±2.24	84.15 ± 3.05
GCNs	$66.04 {\pm} 0.38$	$60.81 {\pm} 2.95$	$45.87 {\pm} 0.88$	74.19 ± 3.15	$76.97 {\pm} 3.97$	$65.78 {\pm} 4.16$
ARMA	$63.53 {\pm} 0.66$	60.21 ± 1.00	$36.27 {\pm} 0.62$	87.25 ± 1.63	$83.97 {\pm} 3.77$	85.62 ± 2.13
APPNP	$59.85 {\pm} 0.54$	52.15 ± 1.79	$35.71 {\pm} 0.78$	$91.08 {\pm} 1.79$	$90.64{\pm}1.70$	$91.52{\pm}1.81$
ChebNet	$58.65 {\pm} 0.74$	59.51 ± 1.25	$40.81 {\pm} 0.42$	$84.19 {\pm} 2.58$	$86.28 {\pm} 2.62$	$83.91 {\pm} 2.17$
GPR-GNN	$71.86 {\pm} 0.29$	$67.49 {\pm} 1.38$	$50.43 {\pm} 1.89$	91.71 ± 1.62	$92.91{\pm}1.32$	$91.57 {\pm} 1.96$
BernNet	$72.01 {\pm} 0.26$	$68.53 {\pm} 1.68$	$51.39 {\pm} 0.92$	92.45 ± 1.22	92.62 ± 1.37	92.13 ± 1.64
ChebNetII	72.11 ± 0.24	$71.37{\pm}1.01$	$57.72 {\pm} 0.59$	$93.72 {\pm} 1.27$	$93.28 {\pm} 1.47$	$92.30{\pm}1.48$
SPECFORMER	$71.84{\pm}0.26$	$74.72{\pm}0.19$	$64.64{\pm}0.81$	$92.98 {\pm} 1.84$	$92.77 {\pm} 2.37$	$91.86{\pm}2.69$
EvenNet	$70.04{\pm}0.47$	$67.57 {\pm} 1.52$	$50.36 {\pm} 0.93$	$93.55 {\pm} 1.68$	$93.77 {\pm} 1.73$	92.13 ± 1.71
Favard	$72.39 {\pm} 0.34$	$74.26 {\pm} 0.74$	$63.62 {\pm} 0.76$	$93.33 {\pm} 1.95$	$91.87 {\pm} 3.11$	$92.06 {\pm} 2.96$
PCNET	$72.35 {\pm} 0.26$	$73.55 {\pm} 1.26$	$63.53 {\pm} 0.26$	$94.26{\pm}1.85$	$92.78{\pm}1.80$	$93.83 {\pm} 1.91$
HALF-HOP	$72.55 {\pm} 0.31$	62.98 ± 3.35	45.25 ± 1.52	87.59 ± 1.77	$85.95 {\pm} 6.42$	$74.60{\pm}6.06$
GCNII	$66.70 {\pm} 0.85$	$63.44 {\pm} 0.85$	$41.96 {\pm} 1.02$	$85.66 {\pm} 1.95$	$80.46 {\pm} 5.91$	$84.26 {\pm} 2.13$
TWIRLS	$68.88 {\pm} 0.22$	$50.21 {\pm} 2.97$	$39.63 {\pm} 1.02$	$91.53 {\pm} 2.81$	91.31 ± 3.36	$89.83 {\pm} 2.29$
PDE-GCN	$71.37 {\pm} 0.35$	66.01 ± 1.56	$48.73 {\pm} 1.06$	$92.85 {\pm} 1.67$	$93.24{\pm}2.03$	89.73 ± 1.35
EGNN	$71.51 {\pm} 0.27$	51.55 ± 1.73	$35.81 {\pm} 0.91$	$83.76 {\pm} 1.64$	$81.34{\pm}1.56$	82.09 ± 1.16
TFE-GNN _{con}	$74.12{\pm}0.40$	$77.03{\pm}1.47$	$71.47 {\pm} 1.15$	96.00 ± 1.73	93.11±4.26	94.26±2.77
TFE - GNN_{sum}	$73.60 {\pm} 0.21$	$77.16{\pm}1.41$	$72.27{\pm}1.32$	$97.38{\pm}1.42$	$94.87{\pm}2.66$	$93.11 {\pm} 2.96$
TFE-GNN TFE_1	$64.09 {\pm} 0.41$	$76.63 {\pm} 2.20$	57.06 ± 1.03	$92.97{\pm}1.38$	$93.44{\pm}1.80$	93.11±2.96
TFE-GNN TFE_2	$73.60 {\pm} 0.21$	$61.05 {\pm} 2.45$	$41.91 {\pm} 0.69$	$81.62 {\pm} 8.40$	$68.36 {\pm} 7.10$	$93.11{\pm}2.96$
TFE-GNN_{rw+sum}	$72.81 {\pm} 0.51$	$69.26{\pm}4.84$	$56.93{\pm}1.04$	$96.00{\pm}1.34$	$93.28{\pm}2.69$	$90.98{\pm}3.38$

Figure 2: Generalization on Cora.

Thanks