

Unifying Homophily and Heterophily for Spectral Graph Neural Networks via Triple Filter Ensembles

Rui Duan, Mingjian Guang, Junli Wang, Chungang Yan, Hongda Qi, Wenkang Su, Can Tian, Haoran Yang

Polynomial-based learnable spectral graph neural networks

The source code of GEN is publicly available at https://github.com/graphNN/TFEGNN

Three Progressive Problems:

1. Some models use polynomials with better approximation for approximating filters, yet perform worse on real-world graphs.

2. Carefully crafted graph learning methods, sophisticated polynomial approximations, and refined coefficient constraints leaded to overfitting, which diminishes the generalization of the models.

3. How to design a model that retains the ability of polynomial-based spectral GNNs to approximate filters while it possesses higher generalization and performance?

Motivations and Contributions:

Inspired by the following properties of ensemble learning: the strong classifier determined by the base classifiers can be more accurate than any of them if the base classifiers are accurate and diverse; and this strong classifier retains the characteristics of the base classifier to some extent. First, we combine a set of weak base low-pass f ilter to determine a strong low-pass filter that can extract homophily. Then, we use the same method to extract heterophily.

- We propose a spectral GNN with triple filter ensemble (TFE-GNN), which extracts ho mophily and heterophily from graphs with different levels of homophily adaptively while utilizing the initial features.
- The key difference between TFE-GNN and prior models is that TFE-GNN retains the ability of polynomial-based spectral GNNs while getting rid of polynomial computations, coefficient constraints, and specific scenarios.

Theoretical Analysis:

Theorem 1. TFE-GNN and ChebNet can be transformed into each other under the following conditions, (1) learning the proper coefficients ω , ω' , ϑ and ChebNet' coefficient θ , (2) the ensemble methods EM_1 , EM_2 and EM_3 take summation, the base high-pass filter H_{hp} takes the symmetric normalized Laplacian L_{sym} and the base low-pass filter H_{lp} takes the affinity (transition) matrix of L_{sym} , and (3) $K_{hp} = K_{lp} = K - 1$. Thus, TFE-GNN can also learn arbitrary filters.

Theorem 2. TFE-GNN can be rewritten in the following form, with certain conditions to be satisfied, which is a combination of two polynomial-based learnable spectral GNNs: Z^* = softmax($f_{mlp}(\vartheta_1 \sum_{k=0}^{K'} \bar{\theta}_k^1 P_k^1 (\bar{H}_{qf}^1)^k X \bigoplus \vartheta_2 \sum_{k=0}^{K''} \bar{\theta}_k^2 P_k^2 (\bar{H}_{qf}^2)^k X)$), where P_k denote polynomials used for approximation, θ are the learnable coefficients, H_{qf} denote graph filters, and \bigoplus denotes EM_3 . Conditions are (1) learning the proper coefficients $\omega, \omega', \vartheta, \bar{\theta}^1$, and $\bar{\theta}^2$, (2) the ensemble methods EM_1 , EM_2 take summation and EM_3 takes ensemble method capable of preserving the properties of the model, such as **summation** and **concatenation**, the base high-pass filter H_{hp} takes \bar{H}_{qf}^2 and the base low-pass filter H_{lp} takes \bar{H}_{qf}^1 , and (3) $K_{lp} = K'$ and $K_{hp} = K''$. Thus, TFE-GNN can match various graph structures adaptively.

Experiments:

Results:

Figure 2: Generalization on Cora.

Thanks