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Model-based RL for offline visual control

• Offline visual RL is a promising approach to learn an efficient control policy from visual observations, 
avoiding the need for high interaction costs with the physical world

• The benefits of using a world model for Offline RL are that the agent interacts with the model rather 
than directly with the dataset

• However, this approach cannot entirely solve the overestimation issue, as the world model may 
overfit the limited dataset, thereby introducing bias
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How to tackle value overestimation?
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• Typical offline RL methods often penalize estimated values beyond the offline data distribution, 
leading to value over-conservatism

• This penalization can suppress the agent’s exploration in the world model --- Exploration that may 
sometimes be valuable and at other times should indeed be suppressed

• How can we differentiate between the two? Address each case accordingly?
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A New Thought: Online Simulator as a Behavior “Test Bed”
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• CoWorld solves offline visual RL as an offline-online-offline transfer learning problem

• CoWorld leverages a target-informed source critic to provide mild constraints for target value 
estimation, without impeding state exploration with potential advantages
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Experimental Setups

• Setup 1: Cross-Task experiments on Meta-World

• Setup 2: Cross-Environments experiments from Meta-World to RoboDesk

• Setup 3: Cross-Dynamics experiments on DeepMind Control Suite (DMC)
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Results: Meta-World→RoboDesk
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• CoWorld outperforms Offline DV2 and DV2 Finetune by large margins

• Directly fine-tuning the source world model in this cross-environment setup, does not result in 
significant improvements in the final performance
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Results: Multi-Source CoWorld
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• When there are notable distinctions between the source domain and target domain, multi-
source CoWorld can adaptively selects a useful source task
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Results: Meta-World
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• Steps：59

• Return：3889

• Steps: 79

• Return：3002

• Unfinished

• Return：1961
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Results: Meta-World
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• Existing approaches often overestimate the value functions in the offline setup

• The values estimated by CoWorld are notably more accurate and more akin to the true values



Making Offline RL Online: Collaborative World Models for Offline Visual Reinforcement Learning 10NeurIPS’24

Results: Meta-World

• The value in each grid cell signifies the ratios of 
returns achieved by CoWorld compared to those 
achieved by the Offline DV2

• Cells highlighted with a green box represent the 
best-source tasks for transfer

• Notably, there are challenging cases with weakly 
related source and target tasks. In the majority of 
cases (26 out of 30), CoWorld outperforms 
Offline DV2
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Results: DeepMind Control Suite
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Method

Step 1: Offline-to-Online State Alignment

Step 2: Online-to-Offline Reward Alignment

Step 3: Min-Max Value Constraint

Please see our paper to find the technical details
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Thanks!

https://qiwang067.github.io/coworld


