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Problem Setting

Online Model Selection with Decentralized Data (OMS-DecD)

The learner aims to design an algorithm without leaking the raw data and minimizing
the regret,
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Problem Setting

A Trivial Approach

Definition 1 (A non-cooperative algorithm)
Let AOMS be an algorithm for centralized online model selection. A non-cooperative
algorithm for OMS-DecD is defined by independently running a copy of AOMS on
each client.

It is obvious that

The regret bound is O(M · Reg(AOMS)).

The non-cooperative algorithm will not leak the raw data.

There is a pessimistic result [1]:

if K = 1, then the non-cooperative algorithm is optimal in full information. In
other words, collaboration is unnecessary in full information setting.
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Problem Setting

Question 1

Whether collaboration is effective for OMS-DecD i.e., K ≥ 2. And if so, how?
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Problem Setting

Our results

Algorithm Regret Computational constraint on clients
Any Ω(M

√
T ln K) No

non-cooperative Ω(M
√

TKJ−1) O(J), 1 ≤ J < K
FOMD-OMS Õ(M

√
T ln K +

√
MTKJ−1) O(J), 2 ≤ J < K

Table 1: Summary of the main results.

We can conclude that

1 No computational constraints on clients.
Collaboration is unnecessary for OMS-DecD.

2 The per-round time complexity on each client is limited to o(K).
Collaboration is necessary for OMS-DecD.

3 The collaboration in previous federated algorithms for distributed online
multi-kernel learning [2, 3] is unnecessary.
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Our Techniques

Overview
Lower Bounds

No computational constraint.
Reducing OMS-DecD to prediction with expert advice. [4]

The per-round time complexity on each client is limited to o(K).
Reducing OMS-DecD to prediction with limited advice. [5]

Algorithm

A new federated online mirror descent framework, FOMD-No-LU.

Decoupling model selection and prediction for efficient communications.

Theoretical analysis

A new Bernstein’s inequality for martingale
high-probability regret bounds that adapt to the complexity of individual
hypothesis space.
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Lower Bounds

Reducing to Prediction with Expert/Limited Advice

Theorem 2 (Lower Bounds)

Assuming that 5 ≤ K ≤ min{d,T}. For each i ∈ [K], let Fi = {fi(x) = e>i x} and
Di = [minx∈X fi(x),maxx∈X fi(x)], where ei is the standard basis vector in Rd.
Denote by sup the supremum over all examples.
(i) There are no computational constraints on clients. Let `(v, y) = |v− y|. The regret
of any algorithm for OMS-DecD satisfies:
limT→∞ sup maxi∈[K] RegD(Fi) ≥ 0.25M

√
T ln K;

(ii) The per-round time complexity on each client is limited to O(J). Let
`(v, y) = 1− v · y. The regret of any, possibly randomized, noncooperative algorithm
with outputs in ∪i∈[K]Di for OMS-DecD satisfies:
supE[maxi∈[K] RegD(Fi)] ≥ 0.1M

√
KTJ−1, where the expectation is taken over the

randomization of algorithm.
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Theoretical Analysis

A New Bernstein’s Inequality for Martingale

Lemma 3

Let X1, . . . ,Xn be a bounded martingale difference sequence w.r.t. the filtration
H = (Hk)1≤k≤n and with |Xk| ≤ a. Let Zt =

∑t
k=1 Xk be the associated martingale.

Denote the sum of the conditional variances by Σ2
n =

∑n
k=1 E

[
X2

k |Hk−1
]
≤ v, where

v ∈ [0,B] is a random variable and B ≥ 2 is a constant. Then for any constant a > 0,
with probability at least 1− 2dlog Beδ,
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The novelty is that the conditional variance v is a random variable, not a constant.
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