Adaptive Labeling for Efficient Out-ofdistribution Model Evaluation

NeurIPS 2024

Daksh Mittal Yuanzhe Ma Shalmali Joshi Hongseok Namkoong

Columbia University

Rigorous Empirical Evaluation Forms the Basis of Engineering Progress

- Initial available data $\mathcal{D}^0 = (\mathcal{X}^0, \mathcal{Y}^0) -$ suffers selection bias
- Al Model $\psi(\cdot)$ trained and evaluated using dataset \mathcal{D}^0
- Distribution seen during deployment P_X
- Naïve evaluation using \mathcal{D}^0 fails to capture performance across P_X
- Ground truth labels are costly

Problem : Efficiently evaluate model $\psi(\cdot)$ on P_X while acquiring minimal number of labels

MDP for Adaptive Labeling

 $\succ Y = f^*(X) + Noise$, f^* - Unknown

- > **Bayesian framework :** Prior μ over f
- \succ Sequentially acquire data in batches (and update the beliefs over f)

States – Posterior beliefs over f that is $\mu_t = \mu(\cdot | \mathcal{D}^{0:t})$

Actions – Batch \mathcal{X}^t selected to be labeled in time period t

Reward/Cost – Minimize Variance of MSE of model at end of horizon T

– MDP

MDP for Adaptive Labeling – three critical components

- Posteriors through Uncertainty Quantification GPs, Deep Learning based methods (Ensemble)
- Actions sampled using policy π_{θ} parametrized through **K-subset sampling**
- **Reward evaluation** $E[Var_{f \sim \mu_T}(g(f))]$ where g(f) = MSE of model $\psi(.)$ under f and P_X

At time step t (Overall repeat T times)

Solving the MDP

- Employ one-step lookaheads
- Policy gradients through PATHWISE gradients rather than high-variance REINFORCE
- Smoothed pipeline to enable PATHWISE gradients

Our algorithm outperforms other baselines

Similar results for real datasets and deep learning based uncertainty quantification methodologies