

Diversity-Driven Synthesis: Enhancing Dataset Distillation through Directed Weight Adjustment

Jiawei Du, Xin Zhang, Juncheng Hu, Wenxing Huang, Joey Tianyi Zhou

Centre for Frontier Al Research (CFAR, A*STAR)

CREATING GROWTH, ENHANCING LIVES

Dataset Distillation (DD)

An intuition

Original Dataset ${\mathcal T}$

Synthetic Dataset S

Visualize data samples (3000 points)

Duplicated easy samples

• Rare hard samples

DD aims to use **fewer, deduplicated** samples to represent the entire data space.

Distilled data samples (100 points)

Baseline

Original Dataset \mathcal{T}

$$\arg\min_{\boldsymbol{s}_i \in \mathbb{R}^d} \ell\left(f_{\theta_{\mathcal{T}}}, \boldsymbol{s}_i\right)$$

PlaneCarBirdCatDeerDogImage: Second second

Poor distillation performance

Solutions with different BN

 $rgmin_{oldsymbol{s}_i \in \mathbb{R}^d} \ell\left(f_{oldsymbol{ heta}_{ au}}, oldsymbol{s}_i
ight)$ Solve it can obtain

Solutions with different Batch Norm.

Baseline: Sre2L (Yin et al.2023)

To obtain

$$\mathcal{N}_2(\mu_2, \sigma_2)$$
 Natural Distribution

Sre2L proposes to use a BN loss to constrain

$$egin{split} \mathcal{L}_{ ext{BN}} &= \mathcal{L}_{ ext{mean}} + \mathcal{L}_{ ext{var}} & ext{where} & \mathcal{L}_{ ext{mean}} \left(f_{ heta_{ au}}, oldsymbol{s}_i
ight) = \sum_l \left\| \mu_l \left(\mathbb{S}
ight) - \mu_l \left(\mathcal{T}
ight)
ight\|_2, \ & ext{and} & \mathcal{L}_{ ext{var}} \left(f_{ heta_{ au}}, oldsymbol{s}_i
ight) = \sum_l \left\| \sigma_l^2 \left(\mathbb{S}
ight) - \sigma_l^2 \left(\mathcal{T}
ight)
ight\|_2, \end{split}$$

Distillation progress is to solve

$$\arg\min_{\boldsymbol{s}_{i}\in\mathbb{R}^{d}}\left[\ell\left(f_{\theta_{\mathcal{T}}},\boldsymbol{s}_{i}\right)+\lambda\mathcal{L}_{\mathrm{BN}}\left(f_{\theta_{\mathcal{T}}},\boldsymbol{s}_{i}\right)\right]_{\mathbb{R}^{d}}$$

Diversity limitations

Distillation progress is to solve

$$rgmin_{oldsymbol{s}_i \in \mathbb{R}^d} \left[\ell\left(f_{ heta_{\mathcal{T}}}, oldsymbol{s}_i
ight) + \lambda \mathcal{L}_{ ext{BN}}\left(f_{ heta_{\mathcal{T}}}, oldsymbol{s}_i
ight)
ight]_{\pm}$$

However, distilled data is clustered at the central

Ideal distilled data

The Diversity issue motivates our study

Diversity limitations

The clustering is caused by the contradictory in BN loss

$$egin{split} \mathcal{L}_{ ext{BN}} &= \mathcal{L}_{ ext{mean}} + \mathcal{L}_{ ext{var}} & ext{where} & \mathcal{L}_{ ext{mean}} \left(f_{ heta_{ au}}, oldsymbol{s}_i
ight) = \sum_l \left\| \mu_l \left(\mathbb{S}
ight) - \mu_l \left(\mathcal{T}
ight)
ight\|_2, \ & ext{and} & \mathcal{L}_{ ext{var}} \left(f_{ heta_{ au}}, oldsymbol{s}_i
ight) = \sum_l \left\| \sigma_l^2 \left(\mathbb{S}
ight) - \sigma_l^2 \left(\mathcal{T}
ight)
ight\|_2, \end{split}$$

For simplicity, we discuss the minimization in the 1D case

Diversity limitations

The clustering is caused by the contradictory in BN loss, theoretical proof is provided

For $\frac{\partial \mathcal{L}_{\text{mean}}}{\partial s_i}$, we have

$$\frac{\partial \mathcal{L}_{\text{mean}}}{\partial \boldsymbol{s}_{i}} = \frac{\partial \left[\mu(\mathcal{S}) - \mu\left(\mathcal{T}\right)\right]^{2}}{\partial \boldsymbol{s}_{i}} = \frac{\partial \left[\mu\left(\mathcal{S}\right) - \mu\left(\mathcal{T}\right)\right]^{2}}{\partial \mu\left(\mathcal{S}\right)} \cdot \frac{\partial \mu\left(\mathcal{S}\right)}{\partial \boldsymbol{s}_{i}}$$
$$= 2 \left[\mu\left(\mathcal{S}\right) - \mu\left(\mathcal{T}\right)\right] \cdot \frac{1}{|\mathcal{S}|},$$

because $\mu(S) = \frac{1}{|S|} \mathbf{s}_i + \sum_{j \neq i} \frac{1}{|S|} \mathbf{s}_j$, thus $\frac{\partial \mu(S)}{\partial \mathbf{s}_i} = \frac{1}{|S|}$. For $\frac{\partial \mathcal{L}_{\text{var}}}{\partial \mathbf{s}_i}$, we have $\frac{\partial \mathcal{L}_{\text{var}}}{\partial \boldsymbol{s}_{i}} = \frac{\partial \left[\sigma^{2}\left(\mathcal{S}\right) - \sigma^{2}\left(\mathcal{T}\right)\right]^{2}}{\partial \boldsymbol{s}_{i}} = \frac{\partial \left[\sigma^{2}\left(\mathcal{S}\right) - \sigma^{2}\left(\mathcal{T}\right)\right]^{2}}{\partial \sigma^{2}\left(\mathcal{S}\right)} \cdot \frac{\partial \sigma^{2}\left(\mathcal{S}\right)}{\partial \boldsymbol{s}_{i}}$ $=2\left[\sigma^{2}\left(\mathcal{S}\right)-\sigma^{2}\left(\mathcal{T}\right)\right]\cdot\frac{\partial\sigma^{2}\left(\mathcal{S}\right)}{\partial\sigma}$ $=2\left[\sigma^{2}\left(\mathcal{S}\right)-\sigma^{2}\left(\mathcal{T}\right)\right]\cdot\frac{\partial\left[\frac{1}{\left|\mathcal{S}\right|}\left(\boldsymbol{s}_{i}-\mu\left(\mathcal{S}\right)\right)^{2}+\sum_{j\neq i}\frac{1}{\left|\mathcal{S}\right|}\left(\boldsymbol{s}_{j}-\mu\left(\mathcal{S}\right)\right)^{2}\right]}{\partial\boldsymbol{s}_{i}}$ ${\mathcal{L}} = 2\left[\sigma^{2}\left(\mathcal{S}
ight) - \sigma^{2}\left(\mathcal{T}
ight)
ight] \cdot rac{1}{\left|\mathcal{S}
ight|} rac{\partial\left(oldsymbol{s}_{i} - \mu\left(\mathcal{S}
ight)
ight)^{2}}{\partialoldsymbol{s}_{i}},$ $=2\left[\sigma^{2}\left(\mathcal{S}
ight)-\sigma^{2}\left(\mathcal{T}
ight)
ight]\cdotrac{1}{\left|\mathcal{S}
ight|}\cdot2\left(oldsymbol{s}_{i}-\mu\left(\mathcal{S}
ight)
ight)\cdotrac{\partial\left(oldsymbol{s}_{i}-\mu\left(\mathcal{S}
ight)
ight)}{\partialoldsymbol{s}_{i}}$ $=2\left[\sigma^{2}\left(\mathcal{S}\right)-\sigma^{2}\left(\mathcal{T}\right)\right]\cdot\frac{1}{\left|\mathcal{S}\right|}\cdot2\left(\boldsymbol{s}_{i}-\mu\left(\mathcal{S}\right)\right)\cdot\left(1-\frac{1}{\left|\mathcal{S}\right|}\right).$

Our feasibility experiments

.

We decouple the BN loss and emphasize the variation loss only

$$\mathcal{L}_{\text{mean}}\left(f_{\theta_{\mathcal{T}}}, \boldsymbol{s}_{i}\right) + \lambda_{\text{var}}\mathcal{L}_{\text{var}}\left(f_{\theta_{\mathcal{T}}}, \boldsymbol{s}_{i}\right)$$

Directed Weight Adjustment (DWA)

We move further to perturb distillation progress for enhanced diversity

- We perturb $\theta_{\mathcal{T}}$ carefully to make it represent the majority of \mathcal{T}
- The majority is \mathcal{T}/\mathbb{B} , which removes a random set \mathbb{B} from \mathcal{T}

$$\theta_{\mathcal{T} \setminus \mathbb{B}} = \theta_{\mathcal{T}} + \nabla_{\theta} L_{\mathbb{B}} \left(f_{\theta_{\mathcal{T}}} \right)$$

Directed Weight Adjustment (DWA)

If we sample the random set many times

Our DWA can thus be formulated as

$$\widetilde{\boldsymbol{s}}_{i} = \underset{\boldsymbol{s} \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \mathcal{L} \quad \text{where} \quad \mathcal{L} = \left[\ell \left(f_{\theta_{\mathcal{T}}} + \widetilde{\Delta \theta}, \boldsymbol{s}_{i} \right) + \lambda \mathcal{L}_{\operatorname{mean}} \left(f_{\theta_{\mathcal{T}}}, \boldsymbol{s}_{i} \right) + \lambda \mathcal{L}_{\operatorname{mean}} \left(f_{\theta_{\mathcal{T}}}, \boldsymbol{s}_{i} \right) + \widetilde{\lambda}_{\operatorname{var}} \mathcal{L}_{\operatorname{var}} \left(f_{\theta_{\mathcal{T}}}, \boldsymbol{s}_{i} \right) \right]$$
$$\widetilde{\Delta \theta} = \underset{\Delta \theta}{\operatorname{arg\,max}} L_{\mathbb{B}} \left(f_{\theta_{\mathcal{T}} + \Delta \theta} \right) \quad \text{where} \quad L_{\mathbb{B}} \left(f_{\theta_{\mathcal{T}} + \Delta \theta} \right) = \sum_{\boldsymbol{x}_{i} \in \mathbb{B}} \ell \left(f_{\theta_{\mathcal{T}} + \Delta \theta}, \boldsymbol{x}_{i} \right),$$
We could enhance diversity but do not introduce noise

Experiments

We could enhance diversity but do not introduce noise

Experiments

Baseline

Ours DWA

Visualization of distilled images of ImageNet-1k

Dataset	ipc	ResNet-18		ResNet-50		ResNet-101	
		SRe2L [46]	DWA (ours)	SRe2L	DWA (ours)	SRe2L	DWA (ours)
Tiny-ImageNet	$\begin{array}{c} 50 \\ 100 \end{array}$	$\left egin{array}{c} 41.1{\pm}0.4\ 49.7{\pm}0.3 \end{array} ight $	$\begin{array}{c} 52.8{\scriptstyle\pm0.2}\\ 56.0{\scriptstyle\pm0.2}\end{array}$	$\left \begin{array}{c} 42.2{\scriptstyle\pm0.5}\ 51.2{\scriptstyle\pm0.4} \end{array} ight $	$53.7{\scriptstyle\pm0.2}\atop\scriptstyle56.9{\scriptstyle\pm0.4}$	$\left \begin{array}{c} 42.5 \pm 0.2 \\ 51.5 \pm 0.3 \end{array} ight $	$54.7{\scriptstyle\pm0.3}\ 57.4{\scriptstyle\pm0.3}$
ImageNet-1K	10 50 100	$ \begin{vmatrix} 21.3 \pm 0.6 \\ 46.8 \pm 0.2 \\ 52.8 \pm 0.3 \end{vmatrix} $	$37.9 {\pm} 0.2 \\ 55.2 {\pm} 0.2 \\ 59.2 {\pm} 0.3$	$\begin{vmatrix} 28.4 \pm 0.1 \\ 55.6 \pm 0.3 \\ 61.0 \pm 0.4 \end{vmatrix}$	$\begin{array}{c} 43.0{\scriptstyle\pm0.5}\\ 62.3{\scriptstyle\pm0.1}\\ 65.7{\scriptstyle\pm0.4}\end{array}$	$\begin{vmatrix} 30.9 \pm 0.1 \\ 60.8 \pm 0.5 \\ 62.8 \pm 0.2 \end{vmatrix}$	$\begin{array}{c} 46.9{\scriptstyle\pm0.4}\\ 63.3{\scriptstyle\pm0.7}\\ 66.7{\scriptstyle\pm0.2}\end{array}$

Results in ImageNet-1k

Theoretical proof and more experimental results can be found in our paper

arXiv

Github