



#### Skinned Motion Retargeting with Dense Geometric Interaction Perception

Zijie Ye<sup>1</sup>, Jia-Wei Liu<sup>2</sup>, Jia Jia<sup>1</sup>, Shikun Sun<sup>1</sup>, Mike Zheng Shou<sup>2</sup>

<sup>1</sup>Tsinghua University, <sup>2</sup>National University of Singapore



#### **Problem Statement**



- Motion Retargeting: Mapping the motion of source character A to target character B
- Potential Issue: Contact Mismatch, Interpenetration
- Goal: Maintaining key characteristics by preserving contact & reducing interpenetration



## Motivation

- Previous Methods
  - Skeletal motion retargeting
    - NKN (CVPR 2018), Villegas et al.
    - PMnet (BMVC 2019), Lim et al.
    - SAN (TOG 2020), Aberman et al.
  - Geometry-aware motion retargeting
    - Contact-aware (CVPR 2021), Villegas et a
    - R2ET (CVPR 2023), Zhang et al.
    - SMTNet (CVPR 2024), Zhang et al.
- Our Goal
  - Instead of correcting skeletal retargeting results, we model dense interactions between body geometries directly.





#### **Challenges & Solutions**

- Challenge: Lack of dense mesh correspondence
- Solution: Semantically consistent sensors (SCS)
  - Inspired by the medial axis inverse transform
  - Automatically derive dense mesh correspondence from sparse skeleton correspondence
  - Each virtual sensor is described by a semantic coordinate  $(b, l, \phi)$



#### Challenges & Solutions

- Challenge: Model dense mesh interaction between body parts
- Solution: Dense mesh interaction (DMI) field
  - Relative sensor positions in sensor tangent space
  - Semantic coordinates instead of spatial coordinates
  - Captures contact & non-contact semantics

$$\mathbf{d}^{t,i,j} = \mathbf{t}_i^{-1} (\mathbf{p}_j^t - \mathbf{p}_i^t),$$
$$\overline{\mathbf{D}}^t = \{ (\mathbf{d}^{t,i,j}, b_i, b_j, l_i, l_j, \phi_i, \phi_j) \}_{i=1:S}^{j=1:S}$$



### Pipeline



- Key designs
  - SCS for dense mesh correspondence
  - DMI field to model complex geometric interactions
  - Sparsify  $\overline{\mathbf{D}} \in O(S^2)$  by sensor pair selection,  $\mathbf{D} = \mathcal{F}_c(\overline{\mathbf{D}}) \in O(S)$
  - Align both skeletal semantics and geometric semantics in one single stage

# Comparison

