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Overview

' The bilevel optimization (BO) problem is formulated as:

min &(z) = f(z, y"()) (UL)
st., y'(x) € arggjin g(x,y) (LL)

Goal: Design an accelerated bilevel optimization algorithm with:

o Upper-level (UL) function: nonconvex with unbounded smoothness

o Lower-level (LL) function: strongly convex

Contributions:
» We propose AccBO, which achieves an improved O(e~?) complexity to find
e-stationary points under the unbounded smoothness setting.

e Our proof relies on a novel lemma analyzing the dynamics of SNAG under
distribution drift with high probability for the lower-level variable.

e Experiments on deep AUC maximization and data hyper-cleaning validate
the effectiveness of our proposed algorithm.

Motivation and Problem Setting

o [t is empirically observed in [1] that the smoothness constant scales linearly
with the gradient norm of RNN (the upper-level function f) for both level

variables.
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Figure 1:(a) UL variable: Local gradient Lipschitz constant vs. its gradient norm of an RNN.
(b) LL variable: Local gradient Lipschitz constant vs. its gradient norm of an RNN.

, = (2, y), there exists
Ly, Ly, Lyo, Ly1 > 0 such that if ||z — 2/|| < 1/\/[/371 + L7 |, then

IVef(2) = Vaf (2] < (Loo + Lol Vaf(2) DIz = 21,
IVyf(2) = Vyf () < (Lyo+ Ly [V f(2)DIz = 21

® (Lo, Ly, Lyo, Ly1)-smoothness: Let z = (x,y) and 2/

Main Challenges and Solutions

o VO(z) = V. f(z,y"(z)) — Vi,9(z,y"(2)[Vy,9(z,y*(2)] 7V, f(z,y7(2)).

We use Neumann series approach |2| to estimate the hypergradient.

o Recent work [1, 3] only achieve O(e~*) complexity under the same setting.
—: Update the UL variable by normalized SGD with recursive momentum
and the LL variable by SNAG with averaging.

e Potential function argument with an expectation-based analysis for L-smooth
objectives |4, 5| cannot be applied due to randomness dependency issue.
—: Introduce novel techniques for analyzing the dynamics of SNAG under
distribution drift with high probability for the LL variable.

AccBO Algorithm

Algorithm 1 STOCHASTIC NESTEROV ACCELERATED GRADIENT METHOD (SNAG)

1: Input: z,y_1,y0, @, 1)

2. fort=0,1,.... 7T, — 1 do

3. Sample 7; from distribution D,
& Z =+ 70 — Y1)

5. U1 = 2t — aV,G(x, 2 )

6: end for

# SNAG(ZL‘, g(),

657 TO)

Algorithm 2 ACCELERATED BILEVEL OPTIMIZATION ALGORITHM (AccBO)

1 lnput: o™, o, o, 8,7,n,7,1,S,Ty, T, set xp, yi™* = 0
2 Yy = SNAG(:E‘ ybmt, o™ T0), and set y_; = 9o = o

3: fort =0,1,...
4.

17— 1do
Sample q(Q)) ~ Uniform{0, ..., — 1} and {Ct(g), . C,fi@))}jg:l
Sample {gt,s SS:I ~ Df' denote gt Usszl {q(Q)v gt,sv C)f(?s)a I Ct(f;Q))}

# Lower-Level: Stochastic Nesterov Accelerated Gradient Descent with Averaging

# Option I: from Line 8 ~ 9 (for one-dimensional quadratic lower-level function)
=y + (Y — Y1)

Y1 = 2 — oV, G(xy, 25 m4), where 1, ~ D,

10. # Option II: from Line 11 ~ 20 (for general strongly convex lower-level function)

11: if ¢ > 0 and t is a multiple of I then

12 Setyl =y =y

13: for]—Ol , N —1do

14: Zt = ?Jt T ’Y(yt — Yy 1)

5.yl =z —aV,G(xy, 2l 7)), where ] ~ D,

16: end for

_ N-+1
17: Y1 = Yy
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18: else

190 Y1 = Yt

20: end if

21 G = (1 = 7)0 + Ty

22:  # Upper-Level: Normalized Stochastic Gradient Descent with Recursive Momentum

23 my = fmy + (1 — BV [z, 5. &) + BV f (2, 95 &) —
= V f(x0, 90; &)

24 T4l = Ly 77||$H

25 end for

# Warm-start

# Averaging

Vf(xt 1 Ur—1; ft)) if t > 1 else

Main Results

Under suitable choice of parameters, for small € > 0 and any given § € (0,1), both Option
I and Option Il guarantee with probability at least 1 — 9 (over the randomness for updating
{y:}) that 3/ E|VO(xs)|| < O(e), where the expectation is taken over all randomness

except for that in updating {y:}. The oracle complexity is 6(6_3).

e Our complexity result is optimal in terms of € up to logarithmic factors.

Key Lemma: SNAG under Distribution Drift

o (With drift) Let ¢¢(y) = glar, y) = 5lly — y*(xy)]|? and y € R, then (V; is the potential function)
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o (Without drift) Let ¢¢(y) = g(z¢,y) be any strongly convex function in y and y € R?, then

t
\/ T
%g(l—ﬁ) V0—|—2(l/0' 1111%

'*-'.4.-'.&-.

NEURAL INFORMATION
PROCESSING SYSTEMS

G V, | GEORGE MASON

UNIVERSITY.: y

Experiments

Deep AUC Maximization:
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Figure 2:Results of bilevel optimization on deep AUC maximization. Figures (a), (b) are the

results over epochs, and (c), (d) are the results over running time.

Data Hyper-Cleaning:

Train Acc vs. Epoch Test Acc vs. Epoch
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Figure 3:Results of bilevel optimization on data hyper-cleaning with p = 0.1. Figures (a), (b)

are the results over epochs, and (c), (d) are the results over running time.
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