An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness

Xiaochuan Gong Jie Hao Mingrui Liu

The bilevel optimization (BO) problem is formulated as:

$$\min_{x \in \mathbb{T}^d} \Phi(x) = f(x, y^*(x))$$

s.t.,
$$y^*(x) \in \arg\min_{x \neq y} g(x, y)$$

Overview

Goal: Design an accelerated bilevel optimization algorithm with:

- Lower-level (LL) function: strongly convex

Contributions:

- ϵ -stationary points under the unbounded smoothness setting.
- distribution drift with high probability for the lower-level variable.
- the effectiveness of our proposed algorithm.

variables.

Main Challenges and Solutions

- $\nabla \Phi(x) = \nabla_x f(x, y^*(x)) \nabla_{xy}^2 g(x, y^*(x)) [\nabla_{yy}^2 g(x, y^*(x))]^{-1} \nabla_y f(x, y^*(x)).$ We use Neumann series approach [2] to estimate the hypergradient.
- Recent work [1, 3] only achieve $\tilde{O}(\epsilon^{-4})$ complexity under the same setting. \implies : Update the UL variable by normalized SGD with recursive momentum and the LL variable by SNAG with averaging.
- Potential function argument with an expectation-based analysis for L-smooth objectives [4, 5] cannot be applied due to randomness dependency issue. \implies : Introduce novel techniques for analyzing the dynamics of SNAG under distribution drift with high probability for the LL variable.

Department of Computer Science, George Mason University

AccBO Algorithm

Under suitable choice of parameters, for small $\epsilon > 0$ and any given $\delta \in (0, 1)$, both Option I and Option II guarantee with probability at least $1 - \delta$ (over the randomness for updating) $\{y_t\}$) that $\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}\|\nabla\Phi(x_t)\| \leq O(\epsilon)$, where the expectation is taken over all randomness. except for that in updating $\{y_t\}$. The oracle complexity is $O(\epsilon^{-3})$.

Key Lemma: SNAG under Distribution Drift

• (With drift) Let $\phi_t(y) = g(x_t, y) = \frac{\mu}{2} ||y - y^*(x_t)||^2$ and $y \in \mathbb{R}$, then $(V_t \text{ is the potential function})$

• (Without drift) Let $\phi_t(y) = g(x_t, y)$ be any strongly convex function in y and $y \in \mathbb{R}^d$, then

 $V_t \le \left(1 - \frac{\sqrt{\mu\alpha}}{4}\right)^t V_0 + 2\alpha\sigma_{g,1}^2 \ln\frac{eT}{\delta}.$

SNAG $(x, \tilde{y}_0, \tilde{\alpha}, T_0)$

Warm-start

Averaging

Deep AUC Maximization:

Figure 2:Results of bilevel optimization on deep AUC maximization. Figures (a), (b) are the results over epochs, and (c), (d) are the results over running time.

Data Hyper-Cleaning:

are the results over epochs, and (c), (d) are the results over running time.

- Our complexity result is optimal in terms of ϵ up to logarithmic factors.

 - $V_t \le \left(1 \frac{\sqrt{\mu\alpha}}{4}\right)^t V_0 + \left(2\alpha\sigma_{g,1}^2 + \frac{80\eta^2 l_{g,1}^2}{\mu^2\alpha}\right)\ln\frac{eT}{\delta}.$

- arXiv:1802.02246, 2018.
- optimization under unbounded smoothness. In Forty-first International Conference on Machine Learning, 2024.
- systems, 34:30271–30283, 2021
- Neural Information Processing Systems, 34:13670–13682, 2021.

Experiments

References

[1] Jie Hao, Xiaochuan Gong, and Mingrui Liu. Bilevel optimization under unbounded smoothness: A new algorithm and convergence analysis. In The Twelfth International Conference on Learning Representations, 2024. [2] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint

[3] Xiaochuan Gong, Jie Hao, and Mingrui Liu. A nearly optimal single loop algorithm for stochastic bilevel

[4] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in neural information processing

[5] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. Advances in