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Overview

The bilevel optimization (BO) problem is formulated as:
min

x∈Rdx
Φ(x) = f (x, y∗(x)) (UL)

s.t., y∗(x) ∈ arg min
y∈Rdy

g(x, y) (LL)

Goal: Design an accelerated bilevel optimization algorithm with:
• Upper-level (UL) function: nonconvex with unbounded smoothness
• Lower-level (LL) function: strongly convex

Contributions:
• We propose AccBO, which achieves an improved Õ(ϵ−3) complexity to find

ϵ-stationary points under the unbounded smoothness setting.
• Our proof relies on a novel lemma analyzing the dynamics of SNAG under

distribution drift with high probability for the lower-level variable.
• Experiments on deep AUC maximization and data hyper-cleaning validate

the effectiveness of our proposed algorithm.

Motivation and Problem Setting

• It is empirically observed in [1] that the smoothness constant scales linearly
with the gradient norm of RNN (the upper-level function f ) for both level
variables.
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Figure 1:(a) UL variable: Local gradient Lipschitz constant vs. its gradient norm of an RNN.
(b) LL variable: Local gradient Lipschitz constant vs. its gradient norm of an RNN.

• (Lx,0, Lx,1, Ly,0, Ly,1)-smoothness: Let z = (x, y) and z′ = (x′, y′), there exists
Lx,0, Lx,1, Ly,0, Ly,1 > 0 such that if ∥z − z′∥ ≤ 1/

√
L2

x,1 + L2
y,1, then

∥∇xf (z) − ∇xf (z′)∥ ≤ (Lx,0 + Lx,1∥∇xf (z)∥)∥z − z′∥,

∥∇yf (z) − ∇yf (z′)∥ ≤ (Ly,0 + Ly,1∥∇yf (z)∥)∥z − z′∥.

Main Challenges and Solutions

• ∇Φ(x) = ∇xf (x, y∗(x)) − ∇2
xyg(x, y∗(x))[∇2

yyg(x, y∗(x))]−1∇yf (x, y∗(x)).
We use Neumann series approach [2] to estimate the hypergradient.

• Recent work [1, 3] only achieve Õ(ϵ−4) complexity under the same setting.
=⇒: Update the UL variable by normalized SGD with recursive momentum
and the LL variable by SNAG with averaging.

• Potential function argument with an expectation-based analysis for L-smooth
objectives [4, 5] cannot be applied due to randomness dependency issue.
=⇒: Introduce novel techniques for analyzing the dynamics of SNAG under
distribution drift with high probability for the LL variable.

AccBO Algorithm

Algorithm 1 Stochastic Nesterov Accelerated Gradient Method (SNAG)
1: Input: x, ỹ−1, ỹ0, α̃, T0 # SNAG(x, ỹ0, α̃, T0)
2: for t = 0, 1, . . . , T0 − 1 do
3: Sample π̃t from distribution Dg

4: z̃t = ỹt + γ(ỹt − ỹt−1)
5: ỹt+1 = z̃t − α̃∇yG(x, z̃t; π̃t)
6: end for

Algorithm 2 Accelerated Bilevel Optimization algorithm (AccBO)
1: Input: αinit, α, α′, β, γ, η, τ, I, S, T0, T , set x0, yinit

0 = 0
2: y0 = SNAG(x0, yinit

0 , αinit, T0), and set y−1 = ŷ0 = y0 # Warm-start
3: for t = 0, 1, . . . , T − 1 do
4: Sample q(Q) ∼ Uniform{0, . . . , Q − 1} and {ζ

(0)
t,s , . . . , ζ

(q(Q))
t,s }S

s=1 ∼ Dg

5: Sample {ξt,s}S
s=1 ∼ Df , denote ξ̄t ∪S

s=1 {q(Q), ξt,s, ζ
(0)
t,s , . . . , ζ

(q(Q))
t,s }

6: # Lower-Level: Stochastic Nesterov Accelerated Gradient Descent with Averaging
7: # Option I: from Line 8 ∼ 9 (for one-dimensional quadratic lower-level function)
8: zt = yt + γ(yt − yt−1)
9: yt+1 = zt − α∇yG(xt, zt; πt), where πt ∼ Dg

10: # Option II: from Line 11 ∼ 20 (for general strongly convex lower-level function)
11: if t > 0 and t is a multiple of I then
12: Set y0

t = y−1
t = yt

13: for j = 0, 1, . . . , N − 1 do
14: zj

t = yj
t + γ(yj

t − yj−1
t )

15: yj+1
t = zj

t − α∇yG(xt, zj
t ; π

j
t ), where πj

t ∼ Dg

16: end for
17: yt+1 = yN+1

t

18: else
19: yt+1 = yt

20: end if
21: ŷt+1 = (1 − τ )ŷt + τyt+1 # Averaging
22: # Upper-Level: Normalized Stochastic Gradient Descent with Recursive Momentum
23: mt = βmt−1 + (1 − β)∇̄f (xt, ŷt; ξ̄t) + β(∇̄f (xt, ŷt; ξ̄t) − ∇̄f (xt−1, ŷt−1; ξ̄t)) if t ≥ 1 else

m0 = ∇̄f (x0, ŷ0; ξ̄0)
24: xt+1 = xt − η mt

∥mt∥
25: end for

Main Results

Under suitable choice of parameters, for small ϵ > 0 and any given δ ∈ (0, 1), both Option
I and Option II guarantee with probability at least 1 − δ (over the randomness for updating
{yt}) that 1

T

∑T−1
t=0 E∥∇Φ(xt)∥ ≤ O(ϵ), where the expectation is taken over all randomness

except for that in updating {yt}. The oracle complexity is Õ(ϵ−3).
• Our complexity result is optimal in terms of ϵ up to logarithmic factors.

Key Lemma: SNAG under Distribution Drift

• (With drift) Let ϕt(y) = g(xt, y) = µ
2∥y − y∗(xt)∥2 and y ∈ R, then (Vt is the potential function)

Vt ≤
(

1 −
√

µα

4

)t

V0 +

(
2ασ2

g,1 +
80η2l2g,1

µ2α

)
ln eT

δ
.

• (Without drift) Let ϕt(y) = g(xt, y) be any strongly convex function in y and y ∈ Rd, then

Vt ≤
(

1 −
√

µα

4

)t

V0 + 2ασ2
g,1 ln eT

δ
.

Experiments

Deep AUC Maximization:
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(a) Training AUC
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(b) Test AUC
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(c) Training AUC vs. Running Time
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(d) Test AUC vs. Running Time

Figure 2:Results of bilevel optimization on deep AUC maximization. Figures (a), (b) are the
results over epochs, and (c), (d) are the results over running time.

Data Hyper-Cleaning:
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(a) Training ACC
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(b) Test ACC

0 500 1000 1500 2000 2500
running time /s

0.4

0.5

0.6

0.7

Tr
ai

n 
Ac

c

Train Acc vs. running time (s)

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
BO-REP
AccBO

(c) Training ACC vs. running time
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(d) Test ACC vs. running time

Figure 3:Results of bilevel optimization on data hyper-cleaning with p = 0.1. Figures (a), (b)
are the results over epochs, and (c), (d) are the results over running time.
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