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Continuous speech recognition

“YOU DO NOT ENGAGE IN ANY SOCIAL MEDIA 
INTERACTION AT ALL”

Visual Speech 
Recognition (VSR)

Auditory Speech 
Recognition (ASR)

Audiovisual Speech 
Recognition (AVSR)
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Self-Supervised Learning

Pre-training dataset

Fine-tuning dataset

Unlabelled Labelled

SSL Methods

AV-HuBERT, RAVEn, 
BRAVEn, AV-data2vec,...

● Leverage unlabelled data by training the encoder on a pretext task

● Popular pretext tasks use ideas from cross-modal learning and 
masked prediction

● Pre-trained network is then fine-tuned on a typically smaller labelled dataset



Problems with Self-Supervised Learning

● Limited alignment between pretext and fine-tuning tasks

● Catastrophic forgetting of encoder, necessitating various training tricks

● Decoder is randomly initialised, prone to overfitting to small labelled dataset



Unified Speech Recognition



Unified Semi-Supervised Training: Main Properties

Setting: Semi-supervised training with 30-hour LRS3 subset as labelled data 
and full 433-hour LRS3 as unlabelled data (low-resource setting)

Confidence threshold Relative labelled weights CTC vs. CTC-attention

VSR benefits from 
abundance, ASR from quality

A threshold between 0 and 1 
is important for performance

A CTC-attention hybrid framework 
improves performance



Unified Self-Supervised Training: Main Properties

Target type Averaging blocks Predictor depth

Setting: Self-supervised pre-training + semi-supervised fine-tuning with 
low-resource setting

Pre-training with AV targets 
yields best performance

Using the average of encoder 
blocks as targets outperforms 
using only the last block

A predictor depth of 2 
works best



Impact of Semi- and Self-supervised Training

LRS3 low-resource setting



Comparisons with Self-Supervised Methods

● State-of-the-art results on LRS3 
low-resource (30h labelled data) and 
high-resource (433h) settings 

● Increasing data/model size improves 
results

● Results achieved with a single model 
for all tasks



Comparisons with the State-of-the-Art on LRS3

● USR surpasses multiple methods which use significantly more labelled data

● USR outperforms self-supervised methods that use self-training strategy



Conclusion / Future Work

● Proposed a single model for VSR, ASR, and AVSR tasks

● Combined self-supervised learning with a semi-supervised method to achieve 
state-of-the-art performance

● Future work: improve pseudo-label quality and incorporate extra audio-only data

Code: https://github.com/ahaliassos/usr



Self-Supervised Works 
(AV-HuBERT, AV-data2vec,...)

Single Model
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Fine-tune 
separately


