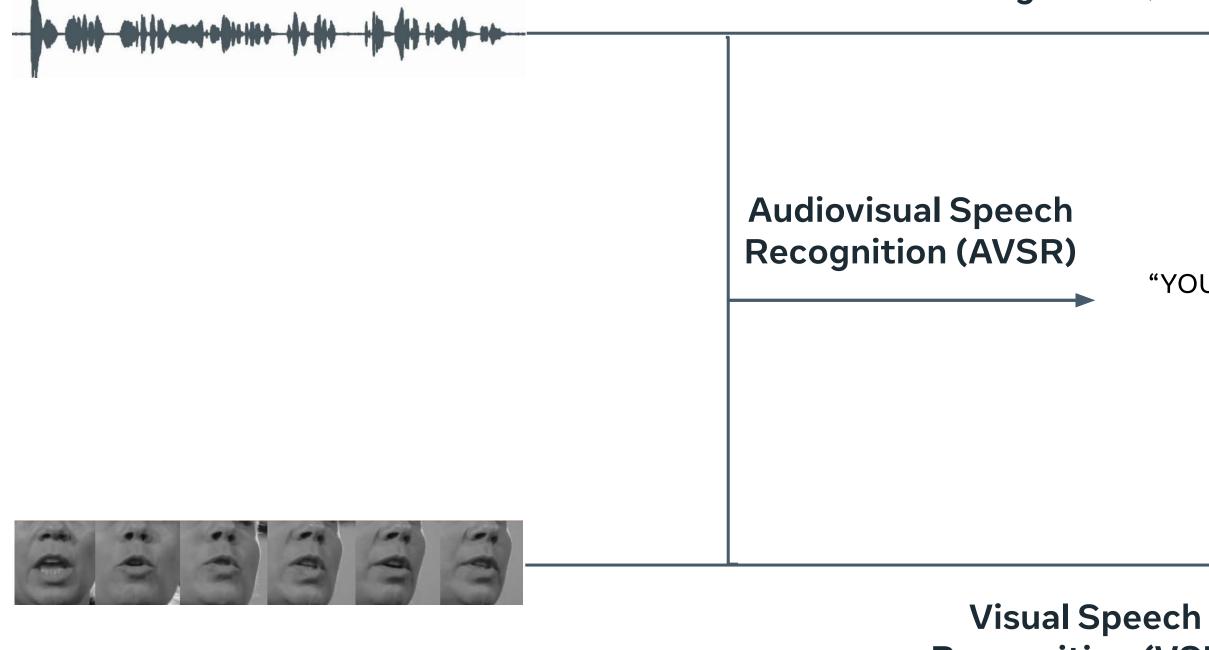
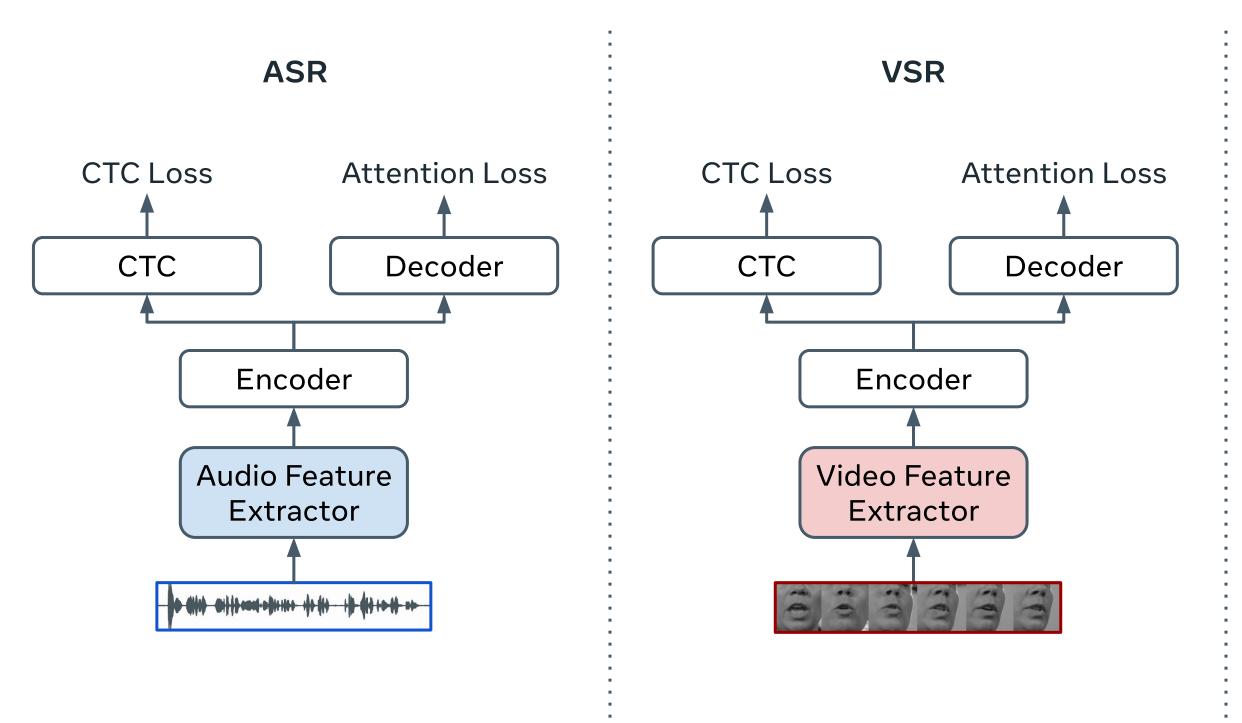

Unified Speech Recognition: A Single Model for Auditory, Visual and Audiovisual Inputs

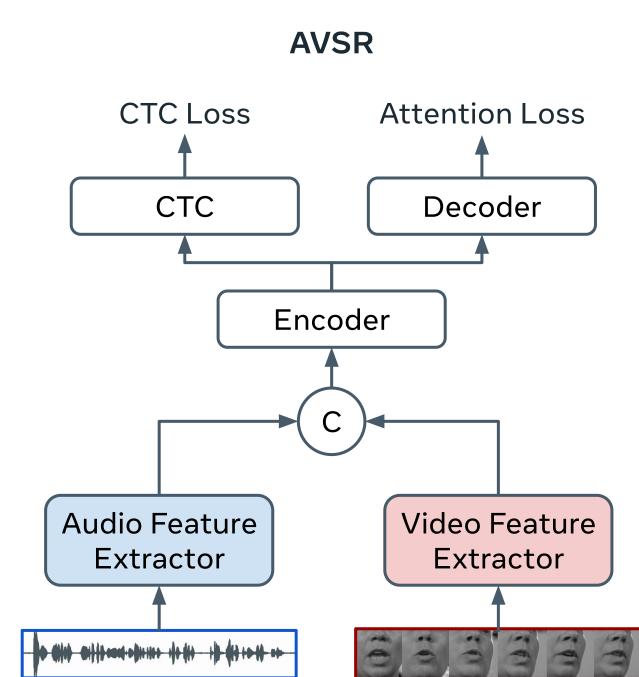
Alexandros Haliassos, Rodrigo Mira, Honglie Chen, Zoe Landgraf, Stavros Petridis, Maja Pantic



Meta

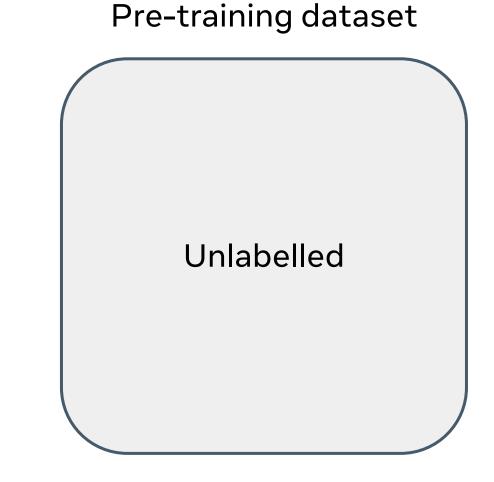
Continuous speech recognition

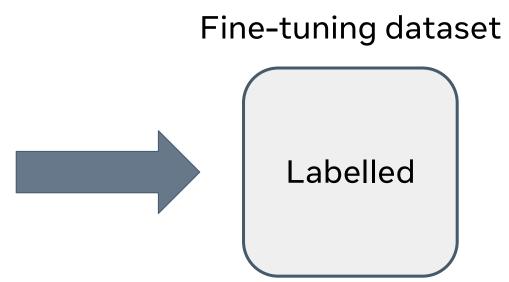

Auditory Speech Recognition (ASR)



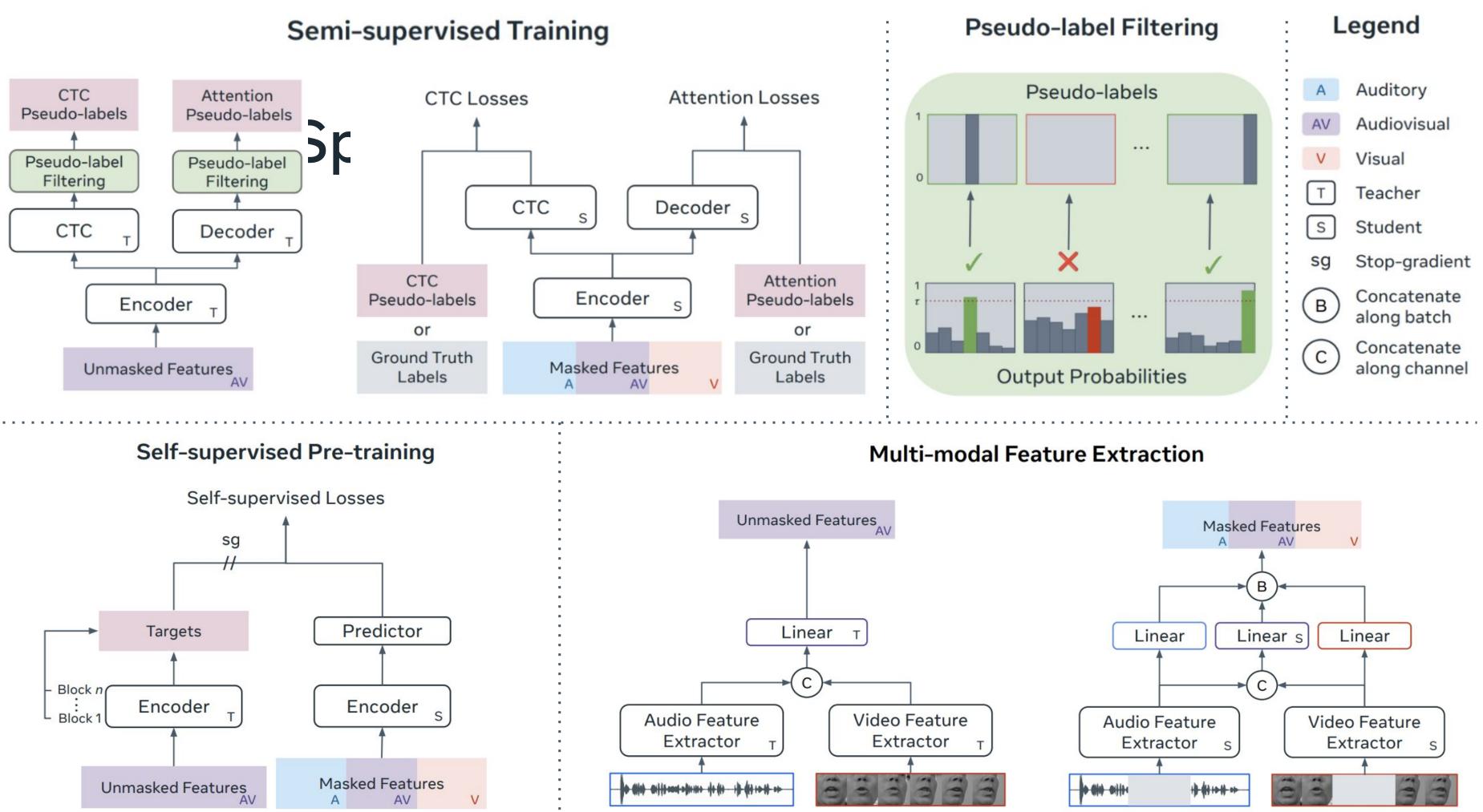
"YOU DO NOT ENGAGE IN ANY SOCIAL MEDIA INTERACTION AT ALL"

Recognition (VSR)


Separate Model per Task


Self-Supervised Learning

- Leverage unlabelled data by training the encoder on a pretext task
- Popular pretext tasks use ideas from cross-modal learning and masked prediction
- Pre-trained network is then fine-tuned on a typically smaller labelled dataset


SSL Methods

AV-HuBERT, RAVEn, BRAVEn, AV-data2vec,...

Problems with Self-Supervised Learning

- Limited alignment between pretext and fine-tuning tasks
- Catastrophic forgetting of encoder, necessitating various training tricks
- Decoder is randomly initialised, prone to overfitting to small labelled dataset

Unified Semi-Supervised Training: Main Properties

Setting: Semi-supervised training with 30-hour LRS3 subset as labelled data and full 433-hour LRS3 as unlabelled data (low-resource setting)

Confidence threshold						
au	W	WER (%)				
·	V	Α	AV			
0.0	40.7	4.9	4.7			
0.8	37.8	4.0	3.9			
1.0	61.8	8.9	8.4			

A threshold between 0 and 1 is important for performance

Relative labelled weights

$\gamma_{ m a}$	$\gamma_{ m v}$	W	WER (%)				
	/ v	V	Α	AV			
0.5	0.5	42.3	4.1	4.0			
0.2	0.2	38.0	4.2	4.1			
0.5	0.2	37.8	4.0	3.9			

VSR benefits from abundance, ASR from quality

CTC vs. CTC-attention	١
------------------------------	---

Loss type	WER (%)					
	V	Α	AV			
CTC	45.6	5.2	5.0			
CTC-att	37.8	4.0	3.9			

A CTC-attention hybrid framework improves performance

Unified Self-Supervised Training: Main Properties

Setting: Self-supervised pre-training + semi-supervised fine-tuning with low-resource setting

Target type						
Target	WER (%)					
inget	V	Α	AV			
Scratch	37.8	4.0	3.9			
V	36.2	3.7	3.4			
Α	37.3	3.2	3.1			
AV	36.0	3.2	3.0			

Pre-training with AV targets yields best performance

Averaging blocks

Target	WER (%)					
1	V	Α	AV			
Last block	37.2	3.4	3.1			
Avg blocks	36.0	3.2	3.0			

Using the average of encoder blocks as targets outperforms using only the last block **Predictor depth**

Depth	WER (%)				
Depui	V	Α	AV		
1	37.0	3.2	3.0		
2	36.0	3.2	3.0		
4	36.9	3.1	2.9		

A predictor depth of 2 works best

Impact of Semi- and Self-supervised Training

LRS3 low-resource setting

Setting	Self-supervised	Fine-tuning	WER (%)		
betting	pre-training	i me tanng	V	Α	AV
Only labelled data	×	Supervised	61.8	8.9	8.4
Self-supervised	\checkmark	Supervised	43.9	4.8	4.6
Semi-supervised	×	Semi-supervised	37.8	4.0	3.9
Self- + semi-supervised	\checkmark	Semi-supervised	36.0	3.2	3.0

Comparisons with Self-Supervised Methods

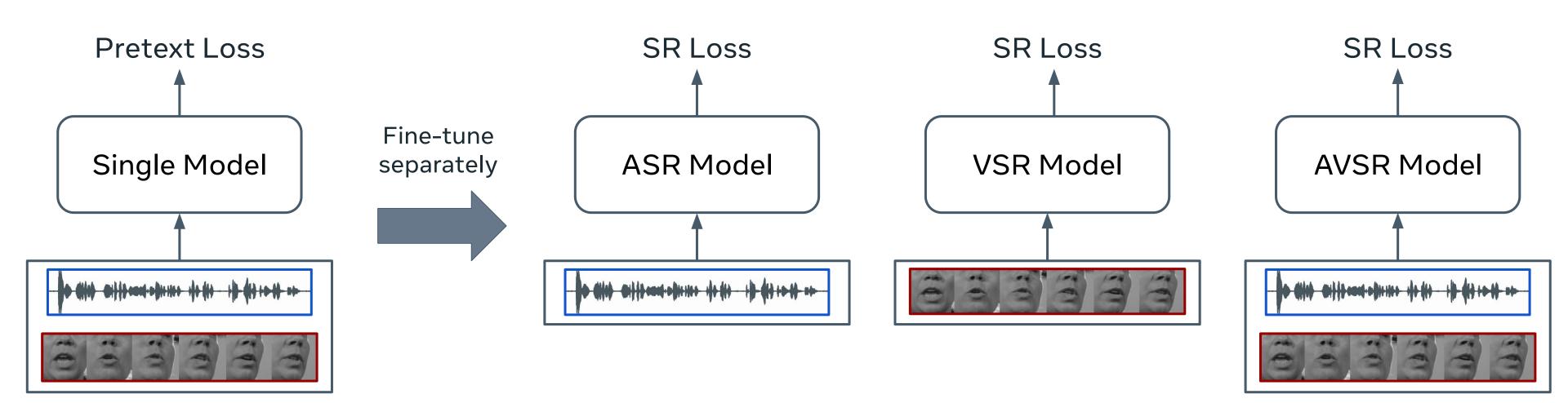
 State-of-the-art results on LRS3 low-resource (30h labelled data) and high-resource (433h) settings

- Increasing data/model size improves results
- Results achieved with a single model for all tasks

Method	Pre-train	Shared	WE	R (%)	LR	WE	R (%)	HR
	data	params	V	Α	AV	V	Α	AV
Base(+) models								
AV-HuBERT [13]	LRS3	×	51.8	4.9	4.7	44.0	3.0	2.8
VATLM [14]	LRS3	×	48.0	-	3.6	-	-	-
RAVEn [17]	LRS3	×	47.0	4.7	-	39.1	2.2	-
AV-data2vec [15]	LRS3	×	45.2	4.4	4.2	39.0	2.0	<u>1.8</u>
Lip2Vec [20]	LRS3	×	49.5	-	-	42.0	-	-
BRAVEn [18]	LRS3	×	<u>43.4</u>	<u>4.0</u>	<u>4.0</u>	<u>36.0</u>	1.9	-
USR	LRS3	1	36.0	3.2	3.0	34.3	1.9	1.6
Base(+) models								
AV-HuBERT [13]	LRS3+Vox2	×	46.1	4.6	4.0	34.8	2.0	1.8
VATLM [14]	LRS3+Vox2	×	42.6	-	3.4	34.2	-	1.7
RAVEn [17]	LRS3+Vox2	×	40.2	3.8	_	33.1	1.9	_
AV-data2vec [15]	LRS3+Vox2	×	37.8	3.7	<u>3.3</u>	32.9	1.7	<u>1.4</u>
Lip2Vec [20]	LRS3+Vox2	×	40.6	-	-	34.1	-	-
BRAVEn [18]	LRS3+Vox2	×	35.1	<u>3.0</u>	-	28.8	1.4	-
USR	LRS3+Vox2	1	28.4	2.6	2.5	26.5	<u>1.6</u>	1.3
Large models								
AV-HuBERT [13]	LRS3+Vox2	×	32.5	2.9	3.3	28.6	1.3	1.4
VATLM [14]	LRS3+Vox2	×	31.6	-	2.7	28.4	-	1.2
RAVEn [17]	LRS3+Vox2	×	32.5	2.7	_	28.2	1.4	— 1
AV-data2vec [15]	LRS3+Vox2	×	<u>30.8</u>	2.7	<u>2.7</u>	28.5	<u>1.3</u>	1.3
Lip2Vec [20]	LRS3+Vox2	×	31.2	-	-	<u>26.0</u>	-	-
BRAVEn [18]	LRS3+Vox2	×	30.8	2.3	-	26.6	1.2	-
u-HuBERT [16]	LRS3+Vox2	~	-	-	-	29.1	1.5	1.3
USR	LRS3+Vox2	1	26.9	<u>2.4</u>	2.4	22.3	1.2	1.1

Comparisons with the State-of-the-Art on LRS3

Method	Labelled	Unlabelled	Language	Shared	WER (%)		
	hours hours		model	params	V	Α	AV
Supervised*							
V2P [50]	3,886	-	×	×	55.1	-	-
RNN-T [38]	31,000	-	×	1	33.6	4.8	4.5
VTP [51]	2,676	_	1	X	30.7	-	-
Auto-AVSR [27]	1,902	-	1	×	23.5	1.0	1.0
Auto-AVSR [27]	3,448	-	1	×	19.1	1.0	0.9
ViT3D-CM [52]	90,000	-	×	×	17.0	-	1.6
SynthVSR [53]	6,720	-	1	×	16.9	-	-
LP Conf [54]	100,000	-	×	×	12.8	-	0.9
Self/semi-supervised							
AV-HuBERT w/ ST [13]	433	1,326	×	×	28.6	-	-
RAVEn w/ ST [17]	433	1,326	1	×	23.1	1.4	-
USR	433	1,326	1	1	21.5	1.2	1.1


- USR surpasses multiple methods which use significantly more labelled data
- USR outperforms self-supervised methods that use self-training strategy

Conclusion / Future Work

- Proposed a single model for VSR, ASR, and AVSR tasks
- Combined self-supervised learning with a semi-supervised method to achieve state-of-the-art performance
- Future work: improve pseudo-label quality and incorporate extra audio-only data

Code: https://github.com/ahaliassos/usr

Self-Supervised Works (AV-HuBERT, AV-data2vec,...)

