

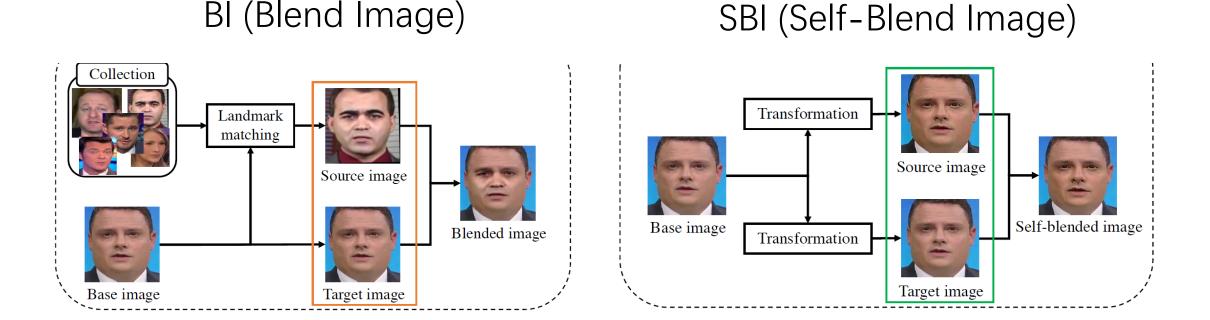
Can We Leave Deepfake Data Behind in Training Deepfake Detector?

Jikang Cheng, Zhiyuan Yan, Ying Zhang, Yuanhao Luo, Zhongyuan Wang, Chen Li

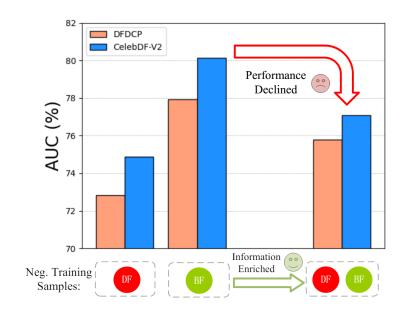
Background

Learning common forgery clues without overfitting to the specific one

Recently advanced methods take only non-DL synthetic faces (Blendfake) during training, e.g. SBI and BI. Actual Deepfake training data is excluded.

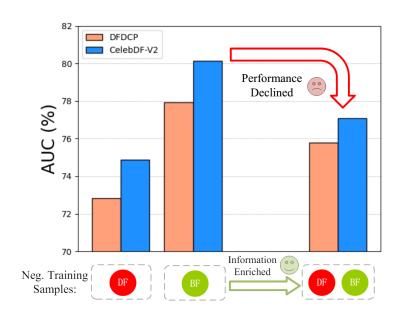


Observation



- General without specific forgery clues
- Harder samples than deepfake, making the detector more sensitive.

Observation



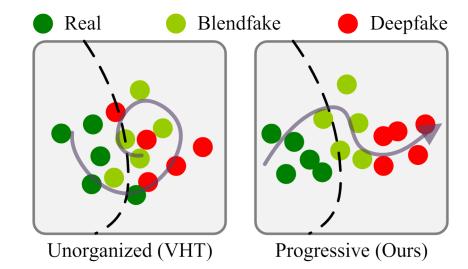
- General without specific forgery clues
- Harder samples than deepfake, making the detector more sensitive.

Are deepfake faces actually worthless for detector training?

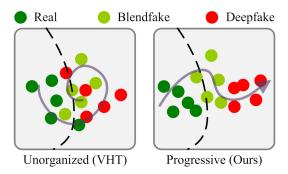
They should include extra useful information.

Basic Idea

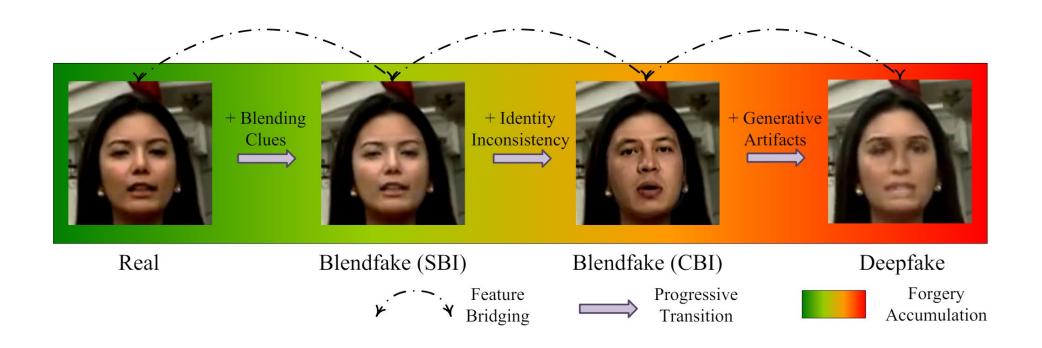
- Unorganized latent-space distribution
- Fail to disentangle the learned representation.



Basic Idea

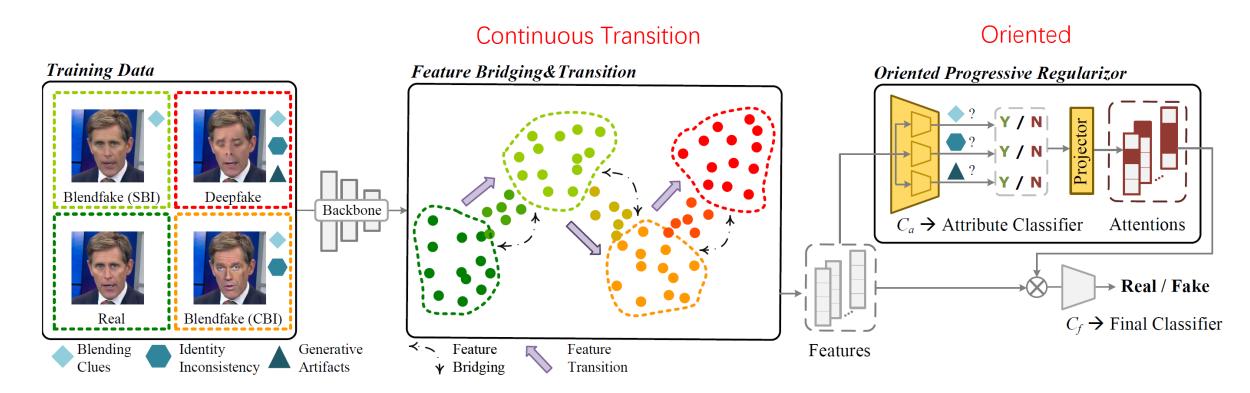


• Real->Blendfake->Deepfake is a continuous progressive process.



Deepfake Deepfake Real Blendfake (SBI) Blendfake (CBI) Real Blendfake (SBI) Blendfake (CBI)

Method (ProDet)



Forgery Attributes Accumulation represents Oriented Separated Anchoring

Experiments: Comparison

Method	Venues	FF++	CDFv1	CDFv2	DFDCP	DFDC	C-Avg.
Xception [10]	CVPR'17	0.9637	0.7794	0.7365	0.7374	0.7077	0.7403
Meso4 [1]	WIFS'18	0.6077	0.7358	0.6091	0.5994	0.5560	0.6251
FWA [26]	CVPRW'18	0.8765	0.7897	0.6680	0.6375	0.6132	0.6771
EfficientB4 [38]	ICML'19	0.9567	0.7909	0.7487	0.7283	0.6955	0.7408
Capsule [31]	ICASSP'19	0.8421	0.7909	0.7472	0.6568	0.6465	0.7104
CNN-Aug [42]	CVPR'20	0.8493	0.7420	0.7027	0.6170	0.6361	0.6745
X-ray [25]	CVPR'20	0.9592	0.7093	0.6786	0.6942	0.6326	0.6787
FFD [12]	CVPR'20	0.9624	0.7840	0.7435	0.7426	0.7029	0.7433
F3Net [33]	ECCV'20	0.9635	0.7769	0.7352	0.7354	0.7021	0.7374
SPSL [29]	CVPR'21	0.9610	0.8150	0.7650	0.7408	0.7040	0.7562
SRM [30]	CVPR'21	0.9576	0.7926	0.7552	0.7408	0.6995	0.7470
I2G-PCL [48]	ICCV'21	0.9312	0.7112	0.6992	0.7358	0.6555	0.7004
CORE [32]	CVPRW'22	0.9638	0.7798	0.7428	0.7341	0.7049	0.7404
Recce [6]	CVPR'22	0.9621	0.7677	0.7319	0.7419	0.7133	0.7387
SLADD [7]	CVPR'22	0.9691	0.8015	0.7403	0.7531	0.7170	0.7530
SBI [36]	CVPR'22	0.8176	0.8311	0.8015	0.7794	0.7139	0.7814
IID [22]	CVPR'23	0.9743	0.7578	0.7687	0.7622	0.6951	0.7462
UCF [44]	ICCV'23	0.9705	0.7793	0.7527	0.7594	0.7191	0.7526
Ours	-	0.9591	0.9094 († 9.42%)	0.8448 († 5.40%)	0.8116 († 4.13%)	0.7240 († 0.68%)	0.8225 († 5.26%)

Experiments: Ablation Study

Table 2: Ablations for each network component (AUC↑ and EER↓). All variants are trained on FF++ (in-dataset) and evaluated on other datasets (cross-dataset). BF-only represents using only blendfake data as the negative samples. M-C, M-L, and TB denotes Multi-Class, Multi-Label, and Triplet Binary strategies, respectively.

Variant	FF++	CDFv1	CDFv2	DFDCP	C-Avg.	
	AUC EER	AUC EER	AUC EER	AUC EER	AUC EER	
BF-only	0.8096 0.2811	0.8413 0.2171	0.8006 0.2804	0.7791 0.3019	0.8070 0.2665	
VHT	0.9353 0.1435	0.8145 0.2603	0.7710 0.2768	0.7577 0.3026	0.7811 0.2799	
w/o L_o	0.9311 0.1493	0.8401 0.2281	0.7959 0.2705	0.7901 0.2737	0.8087 0.2574	
w/o FB	0.9601 0.0816	0.8696 0.2001	0.8278 0.2537	0.8037 0.2811	0.8337 0.2449	
w/o L_t	0.9535 0.1326	0.8890 0.1799	0.8356 0.2301	0.8174 0.2636	0.8473 0.2245	
M-C	0.9677 0.0835 0.9576 0.0994 0.9591 0.1014	0.8630 0.2108	0.8092 0.2739	0.7965 0.2658	0.8229 0.2501	
M-L		0.8757 0.1893	0.8229 0.2533	0.7939 0.2748	0.8308 0.2391	
TB (Ours)		0.9094 0.1688	0.8448 0.2136	0.8116 0.2628	0.8553 0.2151	

Table 3: Ablations on leveraging oriented anchors progressively (AUC). All variants are trained on FF++ (in-dataset) and evaluated on other datasets (cross-dataset).

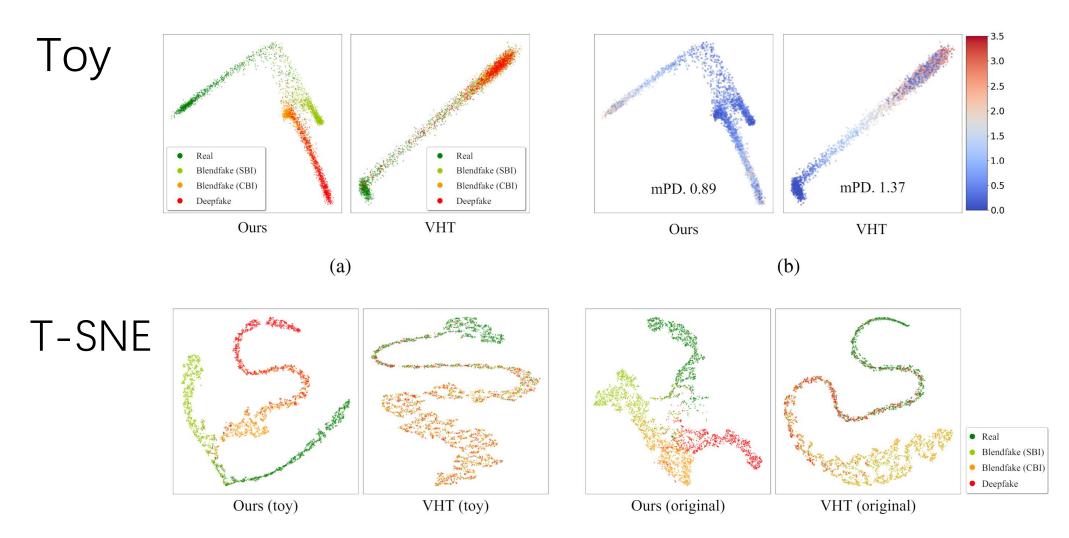
SBI	SBI-FB	CBI	CBI-FB	DF	DF-FB	FF++	CDFv1	CDFv2	DFDCP	C-Avg.
√						0.8176	0.8311	0.8015	0.7794	0.8040
\checkmark	\checkmark					0.8343	0.8507	0.8136	0.7659	0.8101
\checkmark	\checkmark	\checkmark				0.8191	0.8439	0.7917	0.7910	0.8089
\checkmark	\checkmark	\checkmark	\checkmark			0.8210	0.8551	0.8151	0.8081	0.8254
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		0.9539	0.8891	0.8336	0.7947	0.8391
✓	✓	✓	✓	✓	✓	0.9591	0.9094	0.8448	0.8116	0.8553

Table 7: Generalization evaluations on comprehensive datasets.

Methods	DFD	DF1.0	FAVC	WDF	DiffSwap	UniFace	E4S	BlendFace	MobileSwap
DF-only	0.8144/0.8621	0.7462/0.7474	0.8404/0.9150	0.7275/0.6883	0.7959/-	0.7775/0.8212	0.6514/0.6955	0.7813/0.8296	0.8475/0.9053
BF-only	0.8378/0.8901	0.7345/0.7811	0.8627/0.9237	0.7563/ 0.7965	0.8265/-	0.6745/0.6998	0.6797/0.7113	0.8041/0.8529	0.8883/0.9399
VHT	0.8215/0.8505	0.7702/0.8312	0.8402/0.9125	0.7263/0.7811	0.7961/-	0.8445 /0.8979	0.6704/0.7101	0.8311/0.8930	0.8729/0.9295
Ours	0.8581/0.9073	0.7902/0.8536	0.9077/0.9766	0.7718 /0.8287	0.8459/-	0.8441/ 0.9077	0.7103/0.7711	0.8619/0.9287	0.9285/0.9748

Experiments: latent-space organization

$$PD = \sum_{i=1}^{n} \frac{\sqrt{(\mathbf{F}_i)^2 + (\mathbf{F})^2}}{n\mathbf{F}_{std}},$$



Conclusion

• Reversing a **stereotype** in research community, that is, deepfake is left behind during detector training.

 Proposing to leverage the progressive transition from Real->Blenefake->Deepfake.

 Designing ProDet to effectively simulate progressive transition with superior generalization ability.