

Learning Structured Representations with Hyperbolic Embeddings

Aditya Sinha*, Siqi Zeng*, Makoto Yamada, Han Zhao

github.com/UIUCTML/HypStructure

Motivation

Hierarchical Label Structures widely exist in many real-world datasets

CIFAR10 label hierarchy [Krizhevsky et. al, 2009]

root

ImageNet-1k label hierarchy [Li et. al, 2009]

CIFAR100 label hierarchy [Krizhevsky et. al, 2009]

Motivation

 $\square Most representation learning methods \rightarrow permutation invariant$

Motivation

□ Structured Representation Learning → hierarchy informed representations [Zeng et. al, 2022]

l_2 -Cophenetic Correlation Coefficient (**CPCC**)

- NEURAL INFORMATION PROCESSING SYSTEMS
- □ [Zeng et. al, 2022] → Use Cophenetic Correlation Coefficient (CPCC) [Sokal and Rohlf, 1962] for structural regularization

$$\Box \quad \text{Definition} \ \rightarrow \ \text{CPCC}(d_{\mathcal{T}}, \rho) := \frac{\sum\limits_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})(\rho(v_i, v_j) - \overline{\rho})}{\sqrt{\sum\limits_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})^2} \sqrt{\sum\limits_{i < j} (\rho(v_i, v_j) - \overline{\rho})^2}}$$

• $\rho(v_i, v_j) :=$ Euclidean (ℓ_2) distance between two class centroids of the fine class representations • $d_T(v_i, v_j) :=$ The shortest tree distance between the two classes in the hierarchy

Composite optimization objective with structured regularization on the hierarchy:

$$\mathcal{L}(\mathcal{D}) = \sum_{(\boldsymbol{x}, y) \in \mathcal{D}} \ell_{\text{Flat}}(\boldsymbol{x}, y, \theta, w) - \alpha \cdot \text{CPCC}(d_{\mathcal{T}}, \rho)$$

Challenges with l_2 -CPCC

□ Cannot embed some trees in the Euclidean space (ℓ_2) exactly \rightarrow Distort the underlying semantic context in the hierarchy

- Let us attempt to embed leaf nodes A, B, C, D, E into the Euclidean space.
 - CG = DG = EG = 1, CD = DE = CE = 2
 - \Rightarrow CD, DE, CE must be on a plane with equilateral Δ_{CDE}
 - \Rightarrow Green classes (A, B) have same distance 4 to Yellow classes (C,D,E)
 - \Rightarrow A, B must be on the line perpendicular to $\Delta_{\rm CDF}$ and intersecting the plane at
 - O (the barycenter of Δ_{CDE})
 - \Rightarrow Due to uniqueness and symmetry of A,B, we must have AO = BO = 1
 - \Rightarrow We must have AB = 2

AO = 1, OE = $(2\sqrt{3})/3$, AE = 4, which **contradicts** the Pythagorean Theorem

Solution: Hyperbolic Geometry

- $\Box \quad Hyperbolic Geometry \rightarrow more suitable alternative:$
 - □ Non euclidean spaces with negative curvature unlike l_2
 - Hyperbolic spaces are continuous analogues of trees
 - Allow embedding tree-like data in finite dimensions and low distortion [Sarkar, 2012]
 - Used in NLP, Image Classification, Object
 Detection, action retrieval ...
- ❑ Several isometric models → easy transformations between geometries
 - (right) relationship between the commonly used
 Poincare, Klein and Hyperboloid models

[Non-euclidean geometry, Wikipedia 2020]

NEURAL INFORMATION PROCESSING SYSTEMS

HypStructure: Hyperbolic Structured regularizer

- **Goal**: *accurately* and *explicitly* embed the label hierarchy \rightarrow representation space
- HypStructure: label-hierarchy based regularization approach for structured learning in hyperbolic space

□ Advantages:

- Can be easily combined with any standard task losses for optimization
- **□** Enables learning of discriminative and *hierarchy-informed* features
- □ More interpretable and tree-like representations
- □ Beneficial across tasks and datasets → representation learning, ID classification, OOD detection
- □ Formal analysis of the *hierarchy-informed* features → better understanding of structured representation learning

HypStructure: HypCPCC and HypCenter

- □ HypStructure: Combination of two losses (1) <u>Hyp</u>erbolic <u>Cop</u>henetic <u>Correlation Coefficient</u> Loss (HypCPCC) and (2) <u>Hyp</u>erbolic <u>Cen</u>tering Loss (HypCenter)
- **HypCPCC**: extend ℓ_2 -CPCC [Zeng et. al, 2022] to the hyperbolic space
 - I. map Euclidean vectors to Poincare space
 - II. compute class prototypes
 - III. use Poincare distance for CPCC computation
- HypCenter: Inspired from Sarkar's construction [2012]
 - □ place root node at the origin
 - $\Box \quad \boldsymbol{\ell}_{center} \text{ loss} \rightarrow \text{minimize the norm of the hyperbolic representations of the root}$
- Learn hierarchy-informed representations by minimizing:

$$\mathcal{L}(\mathcal{D}) = \sum_{(\boldsymbol{x}, y) \in \mathcal{D}} \ell_{\text{Flat}}(\boldsymbol{x}, y, \theta) - \alpha \cdot \text{HypCPCC}(d_{\mathcal{T}}, d_{\mathbb{B}_c}) + \beta \cdot \ell_{\text{center}}(\boldsymbol{x}, \theta)$$

HypStructure: Algorithm

Algorithm 1 HypStructure: Hyperbolic <u>Structure</u>d Representation Learning

Input: Batch size <i>B</i> , Label tree $\mathcal{T} = (V, E, e)$, Number of epochs <i>K</i> , Task Loss formulation ℓ_{Flat} , Encoder f_{θ} , Classifier Head g_w , Learning Rate η , Hyperparameters α, β						
1: Initiali	1: Initialize model parameters: θ , w					
2: for epo	$\operatorname{pch} = 1, 2, \dots, K \operatorname{do}$					
3: for	b batch = 1, 2,, B do					
4:	Get image-label pairs: $\{(x_i, y_i)\}_{i=1}^B$					
5:	Forward pass to compute the representations: $(\boldsymbol{z}_1 \dots \boldsymbol{z}_B) \leftarrow (f_{\theta}(\boldsymbol{x}_1) \dots (f_{\theta}(\boldsymbol{x}_B))$					
Flat Loss	Compute the Task loss: $\ell_{\text{Flat}}(g_w(\boldsymbol{z}_i), y_i)$					
Euclidean to Poincare	Get hyperbolic representations using exp. map (eq. (6)): $\tilde{z}_i \leftarrow \exp_0^c(z_i)$					
Centroid	Calculate class prototypes using hyp. Averaging (eq. (8)): $\omega_i \leftarrow \text{HypAve}_K(\tilde{z}_1^v, \dots \tilde{z}_j^v)$					
Poincare Distance	Compute pairwise hyp. distances (eq. (5)) $\forall v_i, v_j \in V : \rho(v_i, v_j) \leftarrow d_{\mathbb{B}_c}(\omega_i, \omega_j)$					
10:	Get hyp. CPCC loss (eq. (3): HypCPCC($d_{\mathcal{T}}, \rho$)					
Root Centering	Compute hyp. centering loss using (Equation (8)): $\ell_{\text{center}} = \ \text{HypAve}_B(\tilde{z}_1, \dots, \tilde{z}_B\)$					
12:	Get total loss using Equation (10): $\mathcal{L}(\mathcal{D}_B)$					
13:	Compute Gradients for learnable parameters at time t : $\mathbf{u}_{t}(\theta, w) \leftarrow \nabla_{\theta, w} \mathcal{L}(\mathcal{D}_{B})$					
14:	Refresh the parameters: $(\theta, w)_{t+1} \leftarrow (\theta, w)_t - \frac{\eta}{B} \mathbf{u}_t(\theta, w)$					
Output: $(\boldsymbol{z}_1, \dots \boldsymbol{z}_N); \boldsymbol{\theta}, w$						

Results: Classification and Embedding Hierarchy

- Experiments on three benchmark datasets: CIFAR10, CIFAR100, ImageNet100
- Compared to Flat and ℓ_2 -CPCC [Zeng et. al, 2022]
 - □ Reduced distortion in embedding the hierarchy (Gromov's δ and CPCC), even in low-dimensional regimes \rightarrow more *tree-like* features
 - □ Improved Coarse and Fine Classification accuracies

Dataset (Backbone)	Method	Distortion of Hierarchy		Classification Accuracy	
		δ_{rel} (\downarrow)	CPCC (†)	Fine (†)	Coarse (†)
CIFAR10 (ResNet-18)	Flat ℓ_2 -CPCC HypStructure	0.232 (0.001) 0.174 (0.002) 0.094 (0.003)	0.573 (0.002) 0.966 (0.001) 0.992 (0.001)	94.64 (0.12) 94.47 (0.13) 94.79 (0.14)	99.16 (0.04) 98.91 (0.02) 99.18 (0.04)
CIFAR100 (ResNet-34)	Flat ℓ_2 -CPCC HypStructure	0.209 (0.002) 0.213 (0.006) 0.127 (0.016)	0.534 (0.119) 0.779 (0.002) 0.766 (0.007)	74.96 (0.14) 76.07 (0.19) 76.68 (0.22)	84.15 (0.19) 85.28 (0.32) 86.01 (0.13)
ImageNet100 (ResNet-34)	Flat ℓ_2 -CPCC HypStructure	0.168 (0.003) 0.213 (0.009) 0.134 (0.001)	0.429 (0.002) 0.834 (0.002) 0.841 (0.001)	90.01 (0.07) 89.57 (0.38) 90.12 (0.01)	90.77 (0.11) 90.34 (0.28) 90.84 (0.02)

Visualization: Learnt Representations

- Qualitative analysis of the learnt representations
 - □ Fine classes arrange on the Poincare disk according to the hierarchy
 - $\Box \quad HypStructure \rightarrow leads to sharper and more discriminative features$
 - □ Fine classes of the same coarse parent (same shade of color) are grouped closer

Hyperbolic UMAP: HypStructure on CIFAR10

Results: OOD Detection

- Out-of-Distribution (OOD) detection: detection of samples that do not belong to the in-distribution (ID)
- Mahalanobis Score:

 $s(\boldsymbol{x}) = (f(\boldsymbol{x}) - \mu)^{\top} \Sigma^{-1} (f(\boldsymbol{x}) - \mu)$

- Experiments on 9 real-world OOD datasets for 3 ID datasets with **HypStructure**:
 - Consistent improvement in the OOD detection AUROC across OOD datasets
 - □ Improvement in the ID vs OOD feature separation in the Poincare Disk

Method	AUROC	Method	AUROC	Method	AUROC
CIFAR10		CIFAR100		ImageNet100	
SSD+	97.38	SSD+	85.90	SSD+	92.46
KNN+	97.22	KNN+	86.14	KNN+	92.74
ℓ_2 -CPCC	76.67	ℓ_2 -CPCC	85.26	ℓ_2 -CPCC	91.33
HypStructur	e 97.75	HypStructure	88.21	HypStructure	93.83

Hyperbolic UMAP using HypStructure: CIFAR100 (ID) vs SVHN (OOD)

Average AUROC of OOD Detection

using Mahalanobis Distance

Theoretical Analysis

- □ Motivation: HypStructure with Mahalanobis score leads to improved OOD detection. $s(\mathbf{x}) = (f(\mathbf{x}) - \mu)^{\top} \Sigma^{-1} (f(\mathbf{x}) - \mu)$
- Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for CPCC-based representations.
 - **D** Representation Matrix Z : n x d, Kernel Matrix $K = ZZ^T$: n x n.

Theorem 5.1 (Eigenspectrum of Structured Representation with Balanced Label Tree). Let \mathcal{T} be a balanced tree with height H, such that each level has C_h nodes, $h \in [0, H]$. Let us denote each entry of K as r^h where h is the height of the lowest common ancestor of the row and the column sample. If $r^h \geq 0, \forall h$, then: (i) For h = 0, we have $C_0 - C_1$ eigenvalues $\lambda_0 = 1 - r^1$. (ii) For $0 < h \leq H - 1$, we have $C_h - C_{h+1}$ eigenvalues $\lambda_h = \lambda_{h-1} + (r^h - r^{h+1})\frac{C_0}{C_h}$. (iii) The last eigenvalue is $\lambda_H = \lambda_{H-1} + C_0 r^H$.

Theorem A.2: This statement can be generalized to arbitrary label tree.

Phase Transition Pattern

- Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for CPCC-based representations.
- Example: CIFAR100
 - 20 coarse classes
 - $\Box \quad 1 \text{ coarse class} \rightarrow 5 \text{ fine classes}$

Implication: Coarse directions might be sufficient for OOD detection.

Summary, Contributions and Open Questions

- HypStructure:
 - ☐ Hyperbolic structured regularization approach to accurately and explicitly embed the label hierarchy, address the shortcomings of ℓ,-CPCC
 - Effective for both full training and fine-tuning models across classification, hierarchy embedding and OOD detection tasks
 - □ More interpretable and *tree-like* representations
 - **G** Formal analysis of the eigenspectrum of *hierarchy-informed* features
- Open Questions:
 - □ Understanding the impact of noisy hierarchies
 - Using different models of hyperbolic geometry
 - Error bounds of CPCC style structured regularization objectives

Thanks!