

Learning Structured Representations with Hyperbolic Embeddings

Aditya Sinha*, Siqi Zeng*, Makoto Yamada, Han Zhao

github.com/UIUCTML/HypStructure

Motivation

❏ **Hierarchical** Label Structures widely exist in many real-world datasets

CIFAR10 label hierarchy [Krizhevsky et. al, 2009]

ImageNet-1k label hierarchy [Li et. al, 2009]

Motivation

 \Box Most representation learning methods \rightarrow permutation invariant

Motivation

❏ Structured Representation Learning → hierarchy informed representations [Zeng et. al, 2022]

l2 -Cophenetic Correlation Coefficient (**CPCC**)

❏ [Zeng et. al, 2022] → Use Cophenetic Correlation Coefficient (**CPCC**) [Sokal and Rohlf, 1962] for structural regularization

$$
\Box \quad \text{Definition} \rightarrow \text{CPCC}(d_{\mathcal{T}}, \rho) := \frac{\sum\limits_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})(\rho(v_i, v_j) - \overline{\rho})}{\sqrt{\sum\limits_{i < j} (d_{\mathcal{T}}(v_i, v_j) - \overline{d_{\mathcal{T}}})^2} \sqrt{\sum\limits_{i < j} (\rho(v_i, v_j) - \overline{\rho})^2}}
$$

 \Box $\rho(v_i, v_j) :=$ Euclidean (ℓ_2) distance between two **class centroids** of the fine class representations $d_{\mathcal{T}}(v_i, v_j) :=$ The **shortest tree distance** between the two classes in the hierarchy

❏ Composite optimization objective with structured regularization on the hierarchy:

$$
\mathcal{L}(\mathcal{D}) = \sum_{(\bm{x}, y) \in \mathcal{D}} \ell_{\text{Flat}}(\bm{x}, y, \theta, w) - \alpha \cdot \text{CPCC}(d_{\mathcal{T}}, \rho)
$$

Challenges with ℓ_{2} -**CPCC**

□ Cannot embed some trees in the Euclidean space (ℓ_2) exactly \rightarrow Distort the underlying semantic context in the hierarchy

- Let us attempt to embed leaf nodes A, B, C, D, E into the Euclidean space.
- \Box CG = DG = EG = 1, CD = DE = CE = 2
	- \Rightarrow CD, DE, CE must be on a plane with equilateral Δ_{CDE}
	- ⇒ Green classes (A, B) have same distance 4 to Yellow classes (C,D,E)
	- \Rightarrow A, B must be on the line perpendicular to Δ_{CDF} and intersecting the plane at
	- O (the barycenter of Δ_{CDE})
	- \Rightarrow Due to uniqueness and symmetry of A,B, we must have AO = BO = 1
	- \Rightarrow We must have AB = 2

❏ AO = 1, OE = (2√3)/3, AE = 4, which **contradicts** the Pythagorean Theorem

Solution: Hyperbolic Geometry

- ❏ **Hyperbolic Geometry** → more suitable alternative:
	- ❏ Non euclidean spaces with negative curvature unlike ℓ
	- ❏ Hyperbolic spaces are continuous analogues of trees
	- ❏ Allow embedding tree-like data in finite dimensions and low distortion [Sarkar, 2012]
	- ❏ Used in NLP, Image Classification, Object Detection, action retrieval …
- Several **isometric** models \rightarrow easy transformations between geometries
	- ❏ (right) relationship between the commonly used Poincare, Klein and Hyperboloid models

[Non-euclidean geometry, Wikipedia 2020]

JRAL INFORMATION PROCESSING SYSTEMS

HypStructure: **Hyp**erbolic **Structure**d regularizer

- ❏ **Goal**: *accurately* and *explicitly* embed the label hierarchy → representation space
- ❏ **HypStructure**: label-hierarchy based regularization approach for structured learning in hyperbolic space

❏ **Advantages**:

- ❏ Can be easily combined with any standard task losses for optimization
- ❏ Enables learning of discriminative and *hierarchy-informed* features
- ❏ More interpretable and tree-like representations
- \Box Beneficial across tasks and datasets \rightarrow representation learning, ID classification, OOD detection
- ❏ Formal analysis of the *hierarchy-informed* features → better understanding of structured representation learning and the state of the state of the state of the state $\frac{8}{3}$

HypStructure: **HypCPCC and HypCenter**

- ❏ **HypStructure**: Combination of two losses (1) Hyperbolic Cophenetic Correlation Coefficient Loss (**HypCPCC**) and (2) Hyperbolic Centering Loss (**HypCenter**)
- \Box **HypCPCC**: extend ℓ_2 -CPCC [Zeng et. al, 2022] to the hyperbolic space
	- I. map Euclidean vectors to Poincare space
	- II. compute class prototypes
	- III. use Poincare distance for CPCC computation
- ❏ **HypCenter**: Inspired from Sarkar's construction [2012]
	- ❏ place root node at the origin
	- \Box ℓ_{center} loss \rightarrow minimize the norm of the hyperbolic representations of the root
- ❏ Learn hierarchy-informed representations by minimizing:

$$
\mathcal{L}(\mathcal{D}) = \sum_{(\bm{x}, y) \in \mathcal{D}} \ell_{\text{Flat}}(\bm{x}, y, \theta) - \alpha \cdot \text{HypCPCC}(d_{\mathcal{T}}, d_{\mathbb{B}_c}) + \beta \cdot \ell_{\text{center}}(\bm{x}, \theta)
$$

HypStructure: Algorithm

Algorithm 1 HypStructure: Hyperbolic Structured Representation Learning

Results: Classification and Embedding Hierarchy

-
- ❏ Experiments on three benchmark datasets: CIFAR10, CIFAR100, ImageNet100
- **Q** Compared to Flat and ℓ_{2} -CPCC [Zeng et. al, 2022]
	- \Box Reduced distortion in embedding the hierarchy (Gromov's δ and CPCC), even in low-dimensional regimes → more *tree-like* features
	- ❏ Improved Coarse and Fine Classification accuracies

Visualization: Learnt Representations

- ❏ Qualitative analysis of the learnt representations
	- ❏ Fine classes arrange on the Poincare disk according to the hierarchy
	- ❏ **HypStructure** → leads to sharper and more discriminative features
	- ❏ Fine classes of the same coarse parent (same shade of color) are grouped closer

Hyperbolic UMAP: HypStructure on CIFAR10 tSNE: Flat on CIFAR100 tSNE: https://www.fisnet.com/cifaratously.com/

Results: OOD Detection

- ROCESSING SYS
- ❏ Out-of-Distribution (OOD) detection: detection of samples that do not belong to the in-distribution (ID)
- ❏ Mahalanobis Score:

 $s(\bm{x}) = (f(\bm{x}) - \mu)^{\top} \Sigma^{-1} (f(\bm{x}) - \mu)$

- ❏ Experiments on 9 real-world OOD datasets for 3 ID datasets with **HypStructure**:
	- ❏ Consistent improvement in the OOD detection AUROC across OOD datasets
	- ❏ Improvement in the ID vs OOD feature separation in the Poincare Disk

Hyperbolic UMAP using HypStructure: CIFAR100 (ID) vs SVHN (OOD)

Average AUROC of OOD Detection

using Mahalanobis Distance

Theoretical Analysis

- ❏ Motivation: **HypStructure** with Mahalanobis score leads to improved OOD detection. $s(\bm{x}) = (f(\bm{x}) - \mu)^{\top} \Sigma^{-1} (f(\bm{x}) - \mu)$
- ❏ Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for CPCC-based representations.
	- \Box Representation Matrix Z : n x d, Kernel Matrix K = ZZ^T : n x n.

Theorem 5.1 (Eigenspectrum of Structured Representation with Balanced Label Tree). Let $\mathcal T$ be a balanced tree with height H, such that each level has C_h nodes, $h \in [0, H]$. Let us denote each entry of K as r^h where h is the height of the lowest common ancestor of the row and the column sample. If $r^h \geq 0$, $\forall h$, then: (i) For $h = 0$, we have $C_0 - C_1$ eigenvalues $\lambda_0 = 1 - r^1$. (ii) For $0 < h \leq H-1$, we have $C_h - C_{h+1}$ eigenvalues $\lambda_h = \lambda_{h-1} + (r^h - r^{h+1})\frac{C_0}{C_1}$. (iii) The last eigenvalue is $\lambda_H = \lambda_{H-1} + C_0 r^H$.

❏ Theorem A.2: This statement can be generalized to arbitrary label tree.

Phase Transition Pattern

- ❏ Main Theorem: Existence of eigenvalue gaps **between each level of hierarchy** for CPCC-based representations.
- ❏ Example: CIFAR100
	- ❏ 20 coarse classes
	- \Box 1 coarse class \rightarrow 5 fine classes

❏ Implication: Coarse directions might be sufficient for OOD detection.

Summary, Contributions and Open Questions

- ❏ **HypStructure**:
	- ❏ Hyperbolic structured regularization approach to accurately and explicitly embed the label hierarchy, address the shortcomings of $\ell_{\scriptscriptstyle 2}$ -c<code>PCC</code>
	- ❏ Effective for both full training and fine-tuning models across classification, hierarchy embedding and OOD detection tasks
	- ❏ More interpretable and *tree-like* representations
	- ❏ Formal analysis of the eigenspectrum of *hierarchy-informed* features
- ❏ Open Questions:
	- ❏ Understanding the impact of noisy hierarchies
	- ❏ Using different models of hyperbolic geometry
	- ❏ Error bounds of CPCC style structured regularization objectives

Thanks!