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Motivation
❏ Hierarchical Label Structures widely exist in many real-world datasets 
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CIFAR10 label hierarchy [Krizhevsky et. al, 2009]
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Motivation
❏ Most representation learning methods → permutation invariant
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Permutation Invariant Representations

Permutation 

Invariant Learning

❏ Ignores the hierarchical semantic relationships between classes in the 

feature space



Motivation
❏ Structured Representation Learning → hierarchy informed representations [Zeng et. al, 2022]
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Structure Informed Representations

Structured 

Representation Learning 

[Zeng et. al, 2022]
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✓❏ Distances between the representations in the feature space are 

consistent with the semantic context. 



❏ Composite optimization objective with structured regularization on the hierarchy:  

❏   Euclidean (l2) distance between two  class centroids  of the fine class representations  

❏  The  shortest tree distance  between the two classes in the hierarchy

l2-Cophenetic Correlation Coefficient (CPCC)
❏ [Zeng et. al, 2022] → Use Cophenetic Correlation Coefficient (CPCC) [Sokal and Rohlf, 1962] for structural 

regularization

❏ Definition  →
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Challenges with l2-CPCC

❏ Cannot embed some trees in the Euclidean space (l2) exactly → Distort the 

underlying semantic context in the hierarchy
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❏ Let us attempt to embed leaf nodes A, B, C, D, E into the Euclidean space. 

❏ CG = DG = EG = 1, CD = DE = CE = 2

⇒ CD, DE, CE must be on a plane with equilateral △CDE

⇒ Green classes (A, B) have same distance 4 to Yellow classes (C,D,E)

⇒ A, B must be on the line perpendicular to △CDE and intersecting the plane at 

O         (the barycenter of △CDE)

⇒ Due to uniqueness and symmetry of A,B, we must have AO = BO = 1 

⇒ We must have AB = 2

❏ AO = 1, OE = (2√3)/3, AE = 4, which contradicts the Pythagorean Theorem  



Solution: Hyperbolic Geometry
❏ Hyperbolic Geometry → more suitable alternative:

❏ Non euclidean spaces with negative curvature 

unlike l2
❏ Hyperbolic spaces are continuous analogues of 

trees

❏ Allow embedding tree-like data in finite 

dimensions and low distortion [Sarkar, 2012]

❏ Used in NLP, Image Classification, Object 

Detection, action retrieval … 

7

[Non-euclidean geometry, Wikipedia 2020]

❏ Several isometric models → easy transformations 

between geometries 

❏ (right) relationship between the commonly used  

Poincare, Klein and Hyperboloid models  



HypStructure: Hyperbolic Structured regularizer

❏ Goal: accurately and explicitly embed the label hierarchy → representation space

❏ HypStructure: label-hierarchy based regularization approach for structured learning in 

hyperbolic space 

❏ Advantages: 

❏ Can be easily combined with any standard task losses for optimization

❏ Enables learning of discriminative and hierarchy-informed features

❏ More interpretable and tree-like representations

❏ Beneficial across tasks and datasets → representation learning, ID classification, OOD 

detection

❏ Formal analysis of the hierarchy-informed features → better understanding of structured 

representation learning 8



HypStructure: HypCPCC and HypCenter

❏ HypStructure: Combination of two losses (1) Hyperbolic Cophenetic Correlation Coefficient 

Loss (HypCPCC) and (2) Hyperbolic Centering Loss (HypCenter)

❏ HypCPCC: extend l2-CPCC [Zeng et. al, 2022] to the hyperbolic space 

I. map Euclidean vectors to Poincare space

II. compute class prototypes

III. use Poincare distance for CPCC computation

❏ HypCenter: Inspired from Sarkar’s construction [2012]

❏ place root node at the origin

❏ lcenter loss → minimize the norm of the hyperbolic representations of the root

❏ Learn hierarchy-informed representations by minimizing: 

9



HypStructure: Algorithm
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Flat Loss
Euclidean to Poincare

Centroid
Poincare Distance

Root Centering



Results: Classification and Embedding Hierarchy

❏ Experiments on three benchmark datasets: CIFAR10, CIFAR100, ImageNet100

❏ Compared to Flat and l2-CPCC [Zeng et. al, 2022] 

❏ Reduced distortion in embedding the hierarchy (Gromov’s 𝝳 and CPCC), even in 

low-dimensional regimes → more tree-like features

❏ Improved Coarse and Fine Classification accuracies
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Visualization: Learnt Representations
❏ Qualitative analysis of the learnt representations

❏ Fine classes arrange on the Poincare disk according to the hierarchy

❏ HypStructure → leads to sharper and more discriminative features 

❏ Fine classes of the same coarse parent (same shade of color) are grouped closer
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Hyperbolic UMAP: HypStructure on CIFAR10 tSNE: Flat on CIFAR100 tSNE: HypStructure on CIFAR100



Results: OOD Detection
❏ Out-of-Distribution (OOD) detection: detection of samples that do not belong to the in-distribution (ID) 

❏ Mahalanobis Score: 
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Hyperbolic UMAP using HypStructure: 

CIFAR100 (ID) vs SVHN (OOD) 

Average AUROC of OOD Detection 

using Mahalanobis Distance

❏ Experiments on 9 real-world OOD datasets for 3 ID datasets with HypStructure: 

❏ Consistent improvement in the OOD detection AUROC across OOD datasets

❏ Improvement in the ID vs OOD feature separation in the Poincare Disk



Theoretical Analysis 

❏ Motivation: HypStructure with Mahalanobis score leads to improved OOD detection.

❏ Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for CPCC-based 

representations.

❏ Representation Matrix Z : n x d, Kernel Matrix K  = ZZт : n x n.
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❏ Theorem A.2: This statement can be generalized to arbitrary label tree.



Phase Transition Pattern

❏ Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for 

CPCC-based representations.

❏ Example: CIFAR100

❏ 20 coarse classes

❏ 1 coarse class → 5 fine classes 
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Kernel Matrix K Eigenspectrum of K

❏ Implication: Coarse directions might be 

sufficient for OOD detection. 

CIFAR100 vs SVHN with top k-th principal component



Summary, Contributions and Open Questions

❏ HypStructure:

❏ Hyperbolic structured regularization approach to accurately and explicitly embed the label 

hierarchy, address the shortcomings of l2-CPCC

❏ Effective for both full training and fine-tuning models across classification, hierarchy 

embedding and OOD detection tasks 

❏ More interpretable and tree-like representations 

❏ Formal analysis of the eigenspectrum of hierarchy-informed features 

❏ Open Questions: 

❏ Understanding the impact of noisy hierarchies 

❏ Using different models of hyperbolic geometry

❏ Error bounds of CPCC style structured regularization objectives 

16



Thanks!
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