Real-Time Selection Under General Constraints via Predictive Inference

Lin Lu

School of Statistics and Data Sciences, Nankai University, Tianjin, China

Email: linlu102099@gmail.com

Joint work with Yuyang Huo, Haojie Ren and Changliang Zou

NeurIPS 2024

November 10, 2024

 Ω 1 / 19

1. [Motivation & Problem Statement](#page-2-0)

2. [II-COS: Individual and Interactive Constrained Online Selection](#page-5-0)

3. [Numerical Results for II-COS](#page-13-0)

Motivating example: online recruitment

▶ How to reduce the cost of the subsequent interview process for unsuitable candidates?

- ▶ Control the False Selection Rate to avoid containing too many unsuitable candidates.
- ▶ How to contain suitable candidates with different backgrounds to enrich the diversity?
	- ▶ Control the Similarity among candidates at a desired level.

Problem statement:

- A sequence of i.i.d. unlabeled data X_1, X_2, \cdots arrives in a stream with their responses Y_1, Y_2, \cdots unobserved all the time.
- \triangleright **Task**: to sequentially select samples whose unobserved responses Y_t 's are in the specified target region *A* until a specific stopping time *T*.
	- \blacktriangleright *A* = {1} or {0} for classification. In recruitment, *A* = {the class of suitable candidate}.
	- ▶ $A = [a, b]$ or $[b, +\infty)$ for regression.
- At each time *t*, we make decision $\delta_t = 0/1$ on whether to select X_t until stopping.
- ▶ We call the selection $\delta_t = 1$ is correct if $\theta_t = \mathbb{I}\{Y_t \in \mathcal{A}\} = 1$.
- ▶ **Our goal**: design a real-time selection procedure that can control various constraints at the user-specified stopping time *T*.

Challenges

Natural idea:

- \blacktriangleright $\mu(x) := Y | X = x$: regression or classification model with (X, Y)
- Estimate $\mu(x)$ on some offline labelled data
- ▶ Obtain predicated value $\hat{Y}_i = \hat{\mu}(\mathbf{X}_i)$ for \mathbf{X}_i
- ▶ Use $\mathbb{I}\{\hat{Y}_i \in \mathcal{A}\}$ to approximate $\theta_i = \mathbb{I}\{Y_i \in \mathcal{A}\}$

Challenges:

{Y^{*j*} \in *A*} \neq {*Y_i* \in *A*}

- How to quantify the prediction uncertainty to make the subsequent decisions reliable?
- How to make the selected subset more informative/representative?
- \blacktriangleright How to make sample selection in the online setting?

Individual and Interactive Constrained Online Selection:

- ▶ (1) Quantify the uncertainty of response predictions using **predictive inference**;
- \blacktriangleright (2) Focus on two general types of constraints;
- ▶ (3) Address individual and interactive constraints at **each time**.

Focus on two general types of constraints

1 Individual constraints $C_1(\delta^t)$:

each selected sample has a cost associated with θ_j and \mathbf{X}_j .

2 Interactive constraints $C_2(\delta^t)$:

capture interactive influence among correctly selected samples.

Individual and interactive constraints

▶ Individual constraints

$$
C_1(\delta^t) = \mathbb{E}\left[\frac{\sum_{i\leq t}\{(1-\theta_i)G_0(\mathbf{X}_i) + \theta_iG_1(\mathbf{X}_i)\}\delta_i}{(\sum_{i\leq t}\delta_i)\vee 1}\right] \leq \alpha.
$$
 (2.1)

 \blacktriangleright **E.g.**: If $G_0(X) = 1$ and $G_1(X) = 0$, the individual constraint is false selection rate (FSR)

$$
C_1(\boldsymbol{\delta}^t) = \text{FSR}(\boldsymbol{\delta}^t) = \mathbb{E}\left[\frac{\sum_{i\leq t}(1-\theta_i)\delta_i}{(\sum_{i\leq t}\delta_i)\vee 1}\right]
$$

▶ Interactive constraints

$$
C_2(\boldsymbol{\delta}^t) = \frac{\mathbb{E}\left[\sum_{1 \leq i < j \leq t} g(\mathbf{X}_i, \mathbf{X}_j) \theta_i \theta_j \delta_i \delta_j\right]}{\mathbb{E}\left[\sum_{1 \leq i < j \leq t} \theta_i \theta_j \delta_i \delta_j\right]} \leq K. \tag{2.2}
$$

.

Involves choosing more preferable samples relying on the interaction among correctly selected samples.

Online multiple testing (online FDR control)

- ▶ Generalized *α*-investing framework: [Foster and Stine \[2008](#page-18-0)]; [Aharoni and Rosset \[2014](#page-18-1)]; LOND [[Javanmard and Montanari, 2015](#page-18-2)], SAFFRON [\[Ramdas et al., 2018](#page-18-3)], ADDIS [\[Tian and Ramdas, 2019](#page-18-4)].
- ▶ Structure-adaptive sequential testing: SAST [[Gang et al., 2023](#page-18-5)].

Conformal/predictive inference

- ▶ Conformal inference: [Vovk et al. \[2005](#page-18-6)], [Romano et al. \[2019\]](#page-18-7), [Chernozhukov et al. \[2021\]](#page-18-8), [Vovk \[2015](#page-18-9)], [Barber et al. \[2021](#page-18-10)].
- ▶ Conformal *p*-values: [Bates et al. \[2023\]](#page-18-11); [Jin and Candès \[2023\]](#page-18-12).
- ▶ Prediction-assisted subsampling: [Wu et al. \[2023](#page-18-13)].

Goal and formulation

Our goal for online selection

To select samples of interest by a decision rule $\delta^\mathcal{T}$ controlling both the individual and interactive constraints at any time *t* until reaching the stopping time *T*, i.e.,

 $C_1(\delta^t) \leq \alpha$ and $C_2(\delta^t) \leq K$.

- ▶ *W_t* = $\hat{\mu}(X_t)$ is a predicted value of Y_t and assume that $\hat{\mu}(\cdot)$ is bijection almost surely.
- ▶ $\theta_t = \mathbb{I}(Y_t \in \mathcal{A})$ is Bernoulli(*q*) distributed with $q = \Pr(Y_t \in \mathcal{A})$.

▶ *W_t* can be viewed as generated from two-group model

$$
W_t | \theta_t \sim (1 - \theta_t) f_0 + \theta_t f_1,
$$

where f_0 and f_1 denote pdf of $W_t | \theta_t = 0$ and $W_t | \theta_t = 1$.

▶ With the two-group model, we have

$$
\mathbb{E}[\theta_t \mid \mathbf{X}_t] = 1 - \Pr(\theta_t = 0 \mid \mathcal{W}_t) = 1 - \frac{(1 - q)f_0(\mathcal{W}_t)}{f(\mathcal{W}_t)} := 1 - L_t
$$

where $f = (1 - \pi)f_0 + \pi f_1$ $f = (1 - \pi)f_0 + \pi f_1$. So θ_t is equival[en](#page-7-0)t [t](#page-5-0)o $1 - L_t$ i[n t](#page-7-0)h[e s](#page-9-0)en[se](#page-8-0) [o](#page-9-0)f t[ak](#page-12-0)i[ng](#page-4-0) [ex](#page-12-0)p[ect](#page-0-0)[atio](#page-18-14)n.

Oracle II-COS procedure

 \blacktriangleright Individual constraint $\mathcal{C}_1(\delta^t)$ can be exactly satisfied if

$$
\frac{V_t}{R_t} := \frac{\sum_{i \leq t} \{L_i G_0(\mathbf{X}_i) + (1 - L_i) G_1(\mathbf{X}_i)\} \delta_i}{(\sum_{i \leq t} \delta_i) \vee 1} \leq \alpha
$$

holds, where V_t is the expected cost of summation until time *t* and R_t is the number of selection.

▶ Accordingly, interactive constraint $\mathcal{C}_2(\pmb{\delta}^t) \leq \mathcal{K}$ can be achieved if

$$
\frac{\mathsf{TS}_t}{\mathsf{NS}_t} := \frac{\sum\limits_{1 \leq i < j \leq t} g(\mathbf{X}_i, \mathbf{X}_j)(1 - L_i)(1 - L_j)\delta_i \delta_j}{\sum\limits_{1 \leq i < j \leq t} (1 - L_i)(1 - L_j)\delta_i \delta_j} \leq K,
$$

where the expected total mutual effects conditional on ${X_i}_{i \leq t}$ and the expected number are denoted as TS*^t* and NS*t*, respectively.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q

Oracle II-COS procedure

Oracle II-COS (Individual and Interactive Constrained Online Selection)

If L_t is known, when *t* comes before the first selection (i.e, $R_{t-1} = 0$), the decision rule is $\delta_t = 1$ if

$$
\frac{V_{t-1} + L_t G_0(\mathbf{X}_t) + (1 - L_t) G_1(\mathbf{X}_t)}{R_{t-1} + 1} \le \alpha,
$$
\n(2.3)

holds; otherwise, $\delta_t = 0$ which means \mathbf{X}_t is not selected. When \mathbf{X}_t arrives with $R_{t-1} > 1$, then δ ^t = 1 if [\(2.3\)](#page-10-0) and

$$
\frac{\mathsf{TS}_{t-1} + \left[\sum_{i \leq t-1} g(\mathbf{X}_i, \mathbf{X}_t) (1 - L_i) \delta_i \right] (1 - L_t)}{\mathsf{NS}_{t-1} + \left[\sum_{i \leq t-1} (1 - L_i) \delta_i \right] (1 - L_t)} \leq K \tag{2.4}
$$

hold simultaneously; otherwise, $\delta_t = 0$.

- \triangleright Assume L_t values are known. Then the oracle II-COS selection rule controls both constraints at any time *t*, i.e., $C_1(\delta^t) \leq \alpha$ and $C_2(\delta^t) \leq K$.
- In practice, since L_t is unknown, we adopt a data-splitting strategy to estimate L_t and propose a data-driven II-COS procedure.

KORKARYKERKE PROGRAM

Workflow of data-driven II-COS procedure

KORK@RK\$PK\$P \$ 299 12 / 19

Theorem

*Suppose Assumptions 1-2 hold and take the bandwidths for estimating f and f*⁰ *in the order of* $n^{-1/(2\beta+1)}$. Let $T_m = \inf\{t : \sum_{i=1}^t \delta_i = m\}$ for $m > 2$. Then for any given time $t \geq T_m$, the *data-driven II-COS procedure satisfies*

▶ *(Bound for individual constraint) Denote* ∆*ⁿ* = *Dn −β* ²*β*+1 p log *n and D is a constant depending on M, ℓ, cβ, β, π, c^G and K*(*·*)*, then*

 $C_1(\delta^t) \leq \alpha + \Delta_n$.

 \blacktriangleright *(Bound for interactive constraint) Assume there exists a constant* $\alpha' \in (0,1)$ *such that* $\sum_{i \leq t} \widehat{L}_i \delta_i / (1 \vee R_t) \leq \alpha'$, then

$$
C_2(\delta^t) \leq K + \frac{(K + c_g)\Delta_n}{0.5 - \frac{m\alpha'}{m-1} - \Delta_n}.
$$

The II-COS procedure controls the two constraints asymptotically at any $t \leq T$:

$$
\lim_{n\to\infty} C_1(\delta^t) \leq \alpha \quad \text{and} \quad \lim_{n\to\infty} C_2(\delta^t) \leq K.
$$

Two constraints of interest:

▶ Individual constraint: False selection rate (FSR), computed by the average value of FSP among 500 replications.

$$
\mathsf{FSP}(t) = \frac{\sum_{i=1}^t \delta_i (1 - \theta_i)}{(\sum_{i=1}^t \delta_i) \vee 1}.
$$

Interactive constraint: Empirical similarity (ES), the average of $ES₀$

$$
\mathsf{ES}_0(t) = \frac{\sum\limits_{1 \leq i < j \leq t} g(\mathbf{X}_i, \mathbf{X}_j) \theta_i \theta_j \delta_i \delta_j}{\sum\limits_{1 \leq i < j \leq t} \theta_i \theta_j \delta_i \delta_j},
$$

where *g* is taken as the RBF kernel.

Stopping rule:

▶ Stop when selecting $m = 100$ samples, $T_m = \inf_t \{t : \sum_{i=1}^t \delta_i = m\}.$

Benchmarks:

- ▶ Compare the **II-COS** procedure with four benchmarks from online multiple testing.
- \triangleright **SAST**: implemented with the same IFDR estimator \widehat{L}_t
- ▶ LOND, SAFFARON, ADDIS: implemented with the conformal *p*-values suggested by [Bates](#page-18-11) [et al. \[2023](#page-18-11)]

Model setting:

- \blacktriangleright A classification model:
	- \triangleright **X** *| Y* = 0 *∼ N*₄ (μ_1 , I₄) and **X** *| Y* = 1 *∼ N*₄ (μ_2 , I₄)
	- $\mathbf{u}_1 = (5, 0, 0, 0)^{\top}, \mathbf{u}_2 = (0, 0, -3, -2)^{\top}$ and $Pr(Y = 1) = 0.2$.
- \blacktriangleright The target region is $A = \{1\}$.
- ▶ Random forest with defaulted parameters is trained to give prediction.

Simulation: results in real time

图: The real-time plot of FSR and ES for II-COS, SAST, LOND, SAFFRON and ADDIS. The black dashed lines denote the FSR level $\alpha = 0.1$ and the ES level $K = 0.045$. We use training data size $n_{\text{tr}} = 1,000$ and calibration data size $n_{cal} = 4,000$.

Discussion

Prediction-assisted Inference

Summary:

- ▶ Predictive inference plays a central role to guarantee the validity of the decision-making.
- ▶ A real-time selection rule under general constraints to extract informative samples from target space. (II-COS)

Discussion:

- ▶ More general interactive constraints: uniform/space-filling design criterion.
- ▶ Incorporation of auxiliary information: neighbor information or the feedback information.
- ▶ More general requirements: deterministic sample selection, obtaining a better training model.

Thank you!

See more details and experiments results in our paper:

▶ Real-Time Selection Under General Constraints via Predictive Inference, *NeurIPS*, 2024.

References I

- E. Aharoni and S. Rosset. Generalized *α*-investing: definitions, optimality results and application to public databases. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(4):771–794, 2014.
- R. F. Barber, E. J. Candès, A. Ramdas, and R. J. Tibshirani. Predictive inference with the jackknife+. *The Annals of Statistics*, 49(1):486–507, 2021.
- S. Bates, E. Candès, L. Lei, Y. Romano, and M. Sesia. Testing for outliers with conformal p-values. *The Annals of Statistics*, 51(1):149–178, 2023.
- V. Chernozhukov, K. Wüthrich, and Y. Zhu. Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48):e2107794118, 2021.
- D. P. Foster and R. A. Stine. *α*-investing: a procedure for sequential control of expected false discoveries. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 70(2):429–444, 2008.
- B. Gang, W. Sun, and W. Wang. Structure–adaptive sequential testing for online false discovery rate control. *Journal of the American Statistical Association*, 118(541):732–745, 2023.
- A. Javanmard and A. Montanari. On online control of false discovery rate. *arXiv preprint arXiv:1502.06197*, 2015.
- Y. Jin and E. J. Candès. Selection by prediction with conformal p-values. *Journal of Machine Learning Research*, 24(244): 1–41, 2023.
- A. Ramdas, T. Zrnic, M. Wainwright, and M. Jordan. Saffron: an adaptive algorithm for online control of the false discovery rate. In *International Conference on Machine Learning*, pages 4286–4294. PMLR, 2018.
- Y. Romano, E. Patterson, and E. Candes. Conformalized quantile regression. In *Advances in neural information processing systems*, pages 3538–3548, 2019.
- J. Tian and A. Ramdas. Addis: an adaptive discarding algorithm for online fdr control with conservative nulls. *Advances in Neural Information Processing Systems*, 32:9388–9396, 2019.
- V. Vovk. Cross-conformal predictors. *Annals of Mathematics and Artificial Intelligence*, 74(1):9–28, 2015.
- V. Vovk, A. Gammerman, and G. Shafer. *Algorithmic learning in a random world*. New York: Springer, 2005.
- X. Wu, Y. Huo, H. Ren, and C. Zou. Optimal subsampling via predictive inference. *Journal of the American Statistical Association*, pages 1–29, 2023.

A DIA K PIA A BIA SHA K BIA K Q Q Q