Video Token Merging for Long Video Understanding

Seon-Ho Lee, Jue Wang, Zhikang Zhang, David Fan, Xinyu Li

Motivation & Goal

- Transformer based networks have shown great results
- However, for long video input, it requires high computation cost

Goal

- Explore various token merging methods for long video understanding
- Find effective token merging method for long videos

Naïve Video Token Merging

• Combine the standard token merging with the baseline network as intact as possible

Naïve Video Token Merging

• Combine the standard token merging with the baseline network as intact as possible

	Content (↑)				User (\downarrow)				
Algorithm	Relationship	Speaking	Scene	Director	Genre	Writer	Year	Like	View
Baseline	57.14	36.68	69.76	62.61	56.73	49.40	39.86	0.28	4.18
Naïve	<u>61.90</u>	36.18	72.09	67.28	55.12	51.19	44.75	0.28	4.01

Region-Concentrated Video Token Merging

- A video contains redundant spatiotemporal tokens
- Some tokens are more important than others
- Naïve VTM: uniform token partitioning

Naïve VTM

Center-concentrated VTM

Region-Concentrated Video Token Merging

- A video contains redundant spatiotemporal tokens
- Some tokens are more important than others
- Naïve VTM: uniform token partitioning

	Co		User (\downarrow)						
Algorithm	Relationship	Speaking	Scene	Director	Genre	Writer	Year	Like	View
Baseline	57.14	36.68	69.76	62.61	56.73	49.40	39.86	0.28	4.18
Naïve	61.90	36.18	72.09	67.28	55.12	51.19	44.75	0.28	4.01
Boundary	59.52	37.18	69.76	61.68	57.21	50.0	47.55	0.26	4.16
Center	<u>61.90</u>	40.20	74.41	62.61	58.81	51.19	44.05	0.25	4.11

Motion-Based Video Token Merging

- Moving objects carry important cues in general
- Assign higher sampling probability to tokens with large movement

Motion-based VTM

Motion-Based Video Token Merging

- Moving objects carry important cues in general
- Assign higher sampling probability to tokens with large movement

Content (↑)				User (↓)					
Algorithm	Relationship	Speaking	Scene	Director	Genre	Writer	Year	Like	View
Baseline	57.14	36.68	69.76	62.61	56.73	49.40	39.86	0.28	4.18
Naïve	61.90	36.18	72.09	67.28	55.12	51.19	44.75	0.28	4.01
Boundary	59.52	37.18	69.76	61.68	57.21	50.0	47.55	0.26	4.16
Center	61.90	40.20	74.41	62.61	58.81	51.19	44.05	0.25	4.11
Motion	64.28	37.68	74.41	64.48	58.49	55.95	47.55	0.24	4.13

Learnable Video Token Merging

- Predict the saliency score of each token
- Sample target tokens based on the estimated saliency

Architecture of learnable VTM block

Learnable Video Token Merging

- Predict the saliency score of each token
- Sample target tokens based on the estimated saliency

	Content (↑)				User (↓)				
Algorithm	Relationship	Speaking	Scene	Director	Genre	Writer	Year	Like	View
Baseline	57.14	36.68	69.76	62.61	56.73	49.40	39.86	0.28	4.18
Naïve	61.90	36.18	72.09	67.28	55.12	51.19	44.75	0.28	4.01
Boundary	59.52	37.18	69.76	61.68	57.21	50.0	47.55	0.26	4.16
Center	61.90	40.20	74.41	62.61	58.81	51.19	44.05	0.25	4.11
Motion	64.28	37.68	74.41	64.48	58.49	55.95	47.55	0.24	4.13
Learnable	64.28	42.12	75.58	70.09	59.77	53.57	48.55	0.21	4.01

Experiments

Comparison on the LVU dataset

	Content (↑)			Meta data (↑)				User (↓)			
Algorithm	Relationship	Speaking	Scene	Director	Genre	Writer	Year	Like	View	GPU	Throughput
Obj. T4mer (Wu & Krähenbühl, 2021)	54.76	33.17	52.94	47.66	52.74	36.30	37.76	0.30	3.68	-	-
VideoBERT (Sun et al., 2019)	52.80	37.90	54.90	47.30	51.90	38.50	36.10	0.32	4.46	-	-
Performer (Choromanski et al., 2021)	50.00	38.80	60.46	58.87	49.45	48.21	41.25	0.31	3.93	5.93GB	-
Orthoformer (Patrick et al., 2021)	50.00	38.30	66.27	55.14	55.79	47.02	43.35	0.29	3.86	5.56GB	-
LST (Islam & Bertasius, 2022)	52.38	37.31	62.79	56.07	52.70	42.26	39.16	0.31	3.83	41.38GB	-
ViS4mer (Islam & Bertasius, 2022)	57.14	40.79	67.44	62.61	54.71	48.80	44.75	0.26	3.63	5.15GB	25.64
S5 (Wang et al., 2023)	61.98	41.75	69.88	66.40	58.80	50.60	47.70	0.25	3.51	3.85GB	25.0
S5+LSMCL (Wang et al., 2023)	61.98	41.75	72.53	66.40	61.34	50.60	47.70	0.24	3.51	3.85GB	25.0
Learnable VTM	64.28	42.12	75.58	70.09	59.77	53.57	48.55	0.21	4.01	1.60GB	44.94

Experiments

Results on the COIN and Breakfast dataset

Algorithm	PT Dataset	#PT Samples	Accuracy	Algorithm	PT Dataset	#PT Samples	Accuracy
TSN (Tang et al., 2020) D-sprv (Lin et al., 2022) ViS4mer (Islam & Bertasius, 2022) ViS4mer* (Islam & Bertasius, 2022) S5 (Wang et al., 2023) S5+LSMCL (Wang et al., 2023)	Kinetics-400 HowTo100M Kinetics-600 Kinetics-600 Kinetics-600	306K 136M 495K 495K 495K 495K 495K	73.40 90.00 88.41 87.11 90.42 90.81	VideoGraph (Hussein et al., 2019b) Timeception (Hussein et al., 2019a) GHRM (Zhou et al., 2021) D-sprv (Lin et al., 2022) ViS4mer (Islam & Bertasius, 2022) S5 (Wang et al., 2023) S5+LSMCL (Wang et al., 2023)	Kinetics-400 Kinetics-400 Kinetics-400 HowTo100M Kinetics-600 Kinetics-600 Kinetics-600	306K 136M 495K 136M 495K 495K 495K	65.50 71.30 75.50 89.90 88.17 90.14 90.70
Learnable VTM	Kinetics-600	495K	88.55	Learnable VTM	Kinetics-600	495K	91.26

COIN

BreakFast

Thank you!

Poster: 12 Thu, 11AM-2PM https://neurips.cc/virtual/2024/poster/93137

seonholee@mcl.korea.ac.kr