

Advancing Training Efficiency of Deep Spiking Neural Networks through Rate-based Backpropagation

Chengting Yu¹, Lei Liu¹, Gaoang Wang¹, Erping Li¹, Aili Wang¹

¹Zhejiang University

Background & Motivation

Training Challenges in SNNs training

- Backpropagation through Time (BPTT)
- <u>Complexity</u>: SNNs require complex temporal-spatial computation graphs.
- Resource Intensive: High computational and memory demands limit scalability and practical application in large and deep networks.

Rate Coding in spike representation

- Information encoding based on the <u>frequency</u> of neuronal spikes.
- Predominant form of data representation in SNNs.
- Rate Coding in BPTT: SNNs trained with BPTT on static benchmarks typically utilize rate coding, <u>showing similarities with ANNs</u>.

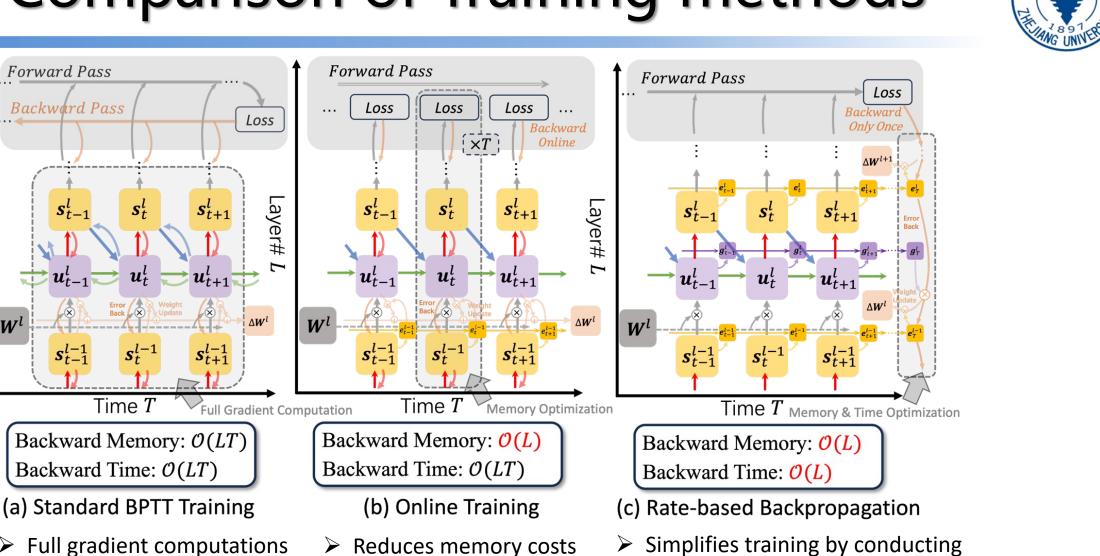
Innovation: Rate-based Backpropagation

- Leverage the effectiveness and dominance of <u>rate</u> <u>coding</u>.
- Targeted training only based rate could offer a <u>high</u> <u>cost-effectiveness ratio</u>.
- Method: Decouples BPTT by approximating rate coding, simplifying computations into <u>a single spatial</u> <u>backpropagation</u>.

Comparison of Training methods

by ignoring inter-

temporal connections.



backward computations once, based

solely on spatial dimensions.

> Full gradient computations among the temporal and spatial dimensions.

 S_t^l

X

Time T

Backward Time: $\mathcal{O}(LT)$

 u_{t+1}^{ι}

 S_{t+1}^{l-1}

Forward Pass

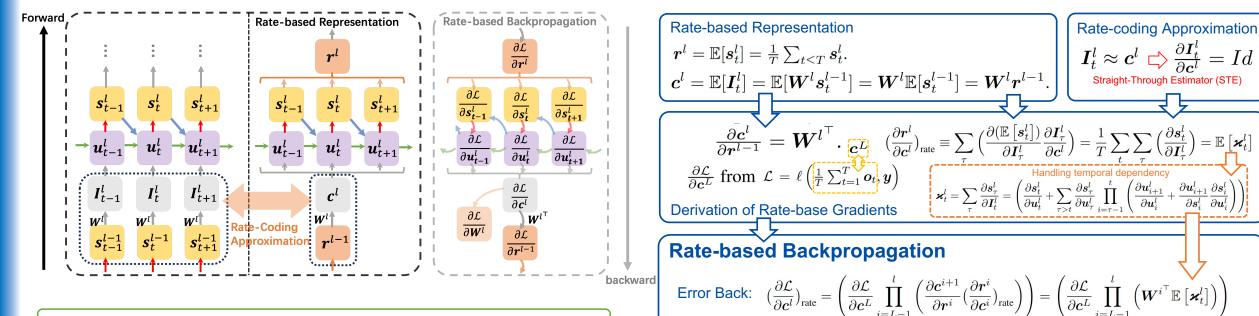
Layer#

 W^l

Backward Pass

 $\boldsymbol{u}_{t}^{l} = \lambda(\boldsymbol{u}_{t-1}^{l} - V_{\text{th}}\boldsymbol{s}_{t-1}^{l}) + \boldsymbol{W}^{l}\boldsymbol{s}_{t}^{l-1}, \quad \boldsymbol{s}_{t}^{l} = H(\boldsymbol{u}_{t}^{l} - V_{\text{th}}) \quad \boldsymbol{I}_{t}^{l} = \boldsymbol{W}^{l}\boldsymbol{s}_{t}^{l-1}$

Weights Descent: $(\nabla_{\mathbf{W}^{l}}\mathcal{L})_{\text{rate}} \equiv \frac{\partial \mathcal{L}}{\partial \mathbf{c}^{l}} \frac{\partial \mathbf{c}^{l}}{\partial \mathbf{W}^{l}} = \frac{\partial \mathcal{L}}{\partial \mathbf{c}^{l}} \mathbf{r}^{l-1^{\top}}$



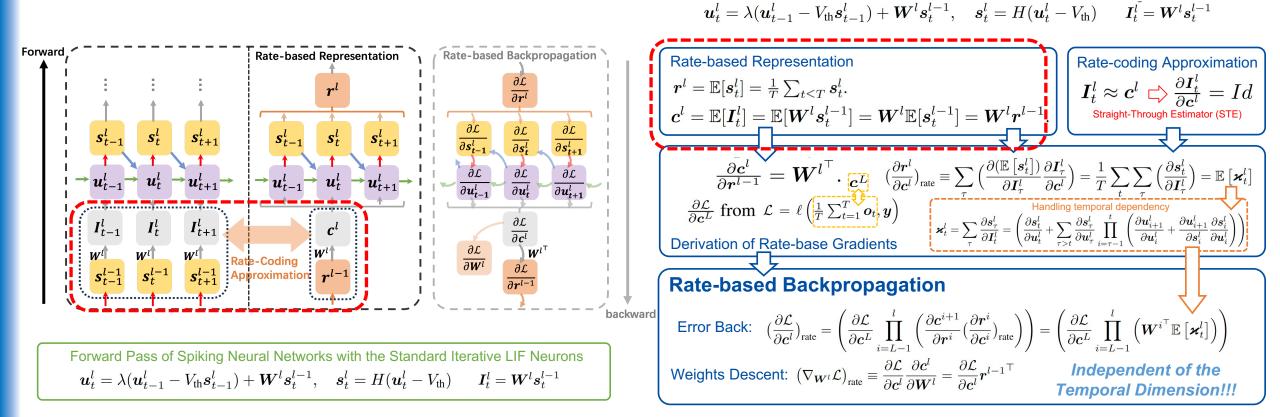
Forward Pass of Spiking Neural Networks with the Standard Iterative LIF Neurons $u_t^l = \lambda (u_{t-1}^l - V_{th} s_{t-1}^l) + W^l s_t^{l-1}, \quad s_t^l = H(u_t^l - V_{th}) \qquad I_t^l = W^l s_t^{l-1}$

$$\begin{split} \boldsymbol{r}^{l} &= \mathbb{E}[\boldsymbol{s}_{t}^{l}] = \frac{1}{T} \sum_{t < T} \boldsymbol{s}_{t}^{l}. \\ \boldsymbol{c}^{l} &= \mathbb{E}[\boldsymbol{I}_{t}^{l}] = \mathbb{E}[\boldsymbol{W}^{l} \boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \mathbb{E}[\boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \boldsymbol{r}^{l-1}. \end{split} \qquad \boldsymbol{I}_{t}^{l} \approx \boldsymbol{c}^{l} \qquad \frac{\partial \boldsymbol{I}_{t}^{l}}{\partial \boldsymbol{c}^{l}} = \boldsymbol{I} \boldsymbol{d} \end{split}$$

$$\overline{\partial \boldsymbol{c}^{l}} = \boldsymbol{W}^{l^{\top}} \cdot \overline{\boldsymbol{c}^{L}} (\frac{\partial \boldsymbol{r}^{l}}{\partial \boldsymbol{c}^{l}})_{\text{rate}} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E} \left[\boldsymbol{s}_{t}^{l} \right])}{\partial \boldsymbol{I}_{\tau}^{l}} \frac{\partial \boldsymbol{I}_{\tau}^{l}}{\partial \boldsymbol{c}^{l}} \right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{I}_{\tau}^{l}} \right) = \mathbb{E} \left[\boldsymbol{\varkappa}_{t}^{l} \right]$$

Independent of the

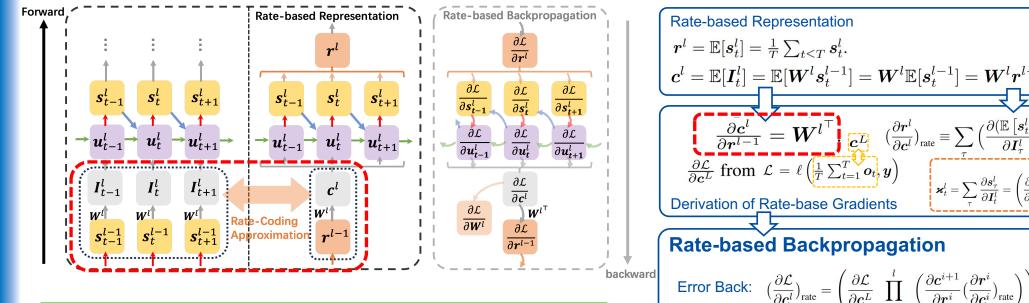
Temporal Dimension!!!



$$\begin{aligned} \boldsymbol{r}^{l} &= \mathbb{E}[\boldsymbol{s}_{t}^{l}] = \frac{1}{T} \sum_{t < T} \boldsymbol{s}_{t}^{l}. \\ \boldsymbol{c}^{l} &= \mathbb{E}[\boldsymbol{I}_{t}^{l}] = \mathbb{E}[\boldsymbol{W}^{l} \boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \mathbb{E}[\boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \boldsymbol{r}^{l-1}. \end{aligned} \qquad \boldsymbol{I}_{t}^{l} \approx \boldsymbol{c}^{l} \qquad \frac{\partial \boldsymbol{I}_{t}^{l}}{\partial \boldsymbol{c}^{l}} = \boldsymbol{I} \boldsymbol{d} \end{aligned}$$

$$\overline{\partial \boldsymbol{c}^{l}} = \boldsymbol{W}^{l^{\top}} \cdot \overline{\boldsymbol{c}^{L}} (\frac{\partial \boldsymbol{r}^{l}}{\partial \boldsymbol{c}^{l}})_{\text{rate}} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E} \left[\boldsymbol{s}_{t}^{l} \right])}{\partial \boldsymbol{I}_{\tau}^{l}} \frac{\partial \boldsymbol{I}_{\tau}^{l}}{\partial \boldsymbol{c}^{l}} \right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{I}_{\tau}^{l}} \right) = \mathbb{E} \left[\boldsymbol{\varkappa}_{t}^{l} \right]$$

5



Forward Pass of Spiking Neural Networks with the Standard Iterative LIF Neurons $u_t^l = \lambda (u_{t-1}^l - V_{th} s_{t-1}^l) + W^l s_t^{l-1}, \quad s_t^l = H(u_t^l - V_{th}) \qquad I_t^l = W^l s_t^{l-1}$

$$egin{aligned} m{r}^l &= \mathbb{E}[m{s}^l_t] = rac{1}{T} \sum_{t < T} m{s}^l_t. & m{I}^l_t pprox m{c}^l &= \mathbb{E}[m{I}^l_t] = \mathbb{E}[m{W}^lm{s}^{l-1}_t] = m{W}^l\mathbb{E}[m{s}^{l-1}_t] = m{W}^lm{r}^{l-1}. & m{I}^l_t pprox m{c}^l &= m{I}d \end{aligned}$$

$$\overline{\partial \boldsymbol{c}^{l}} = \boldsymbol{W}^{l^{\top}} \cdot \overline{\boldsymbol{c}^{L}} (\frac{\partial \boldsymbol{r}^{l}}{\partial \boldsymbol{c}^{l}})_{\text{rate}} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E} \left[\boldsymbol{s}_{t}^{l} \right])}{\partial \boldsymbol{I}_{\tau}^{l}} \frac{\partial \boldsymbol{I}_{\tau}^{l}}{\partial \boldsymbol{c}^{l}} \right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{I}_{\tau}^{l}} \right) = \mathbb{E} \left[\boldsymbol{\varkappa}_{t}^{l} \right]$$

$$m{u}_t^l = \lambda (m{u}_{t-1}^l - V_{ ext{th}} m{s}_{t-1}^l) + m{W}^l m{s}_t^{l-1}, \quad m{s}_t^l = H(m{u}_t^l - V_{ ext{th}}) \qquad m{I}_t^{l-} = m{W}^l m{s}_t^{l-}$$

Rate-based Representation

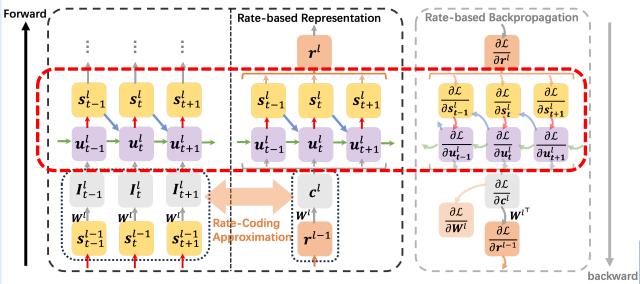
$$r^{l} = \mathbb{E}[s_{t}^{l}] = \frac{1}{T} \sum_{t < T} s_{t}^{l}.$$

$$c^{l} = \mathbb{E}[I_{t}^{l}] = \mathbb{E}[W^{l}s_{t}^{l-1}] = W^{l}\mathbb{E}[s_{t}^{l-1}] = W^{l}r^{l-1}.$$
Rate-coding Approximation

$$I_{t}^{l} \approx c^{l} \Longrightarrow \frac{\partial I_{t}^{l}}{\partial c^{l}} = Id$$
Straight-Through Estimator (STE)

$$\frac{\partial c^{l}}{\partial r^{l-1}} = W^{l^{\top}} c^{L} \quad \left(\frac{\partial r^{l}}{\partial c^{l}}\right)_{rate} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E}[s_{t}^{l}])}{\partial I_{\tau}^{l}} \frac{\partial I_{\tau}^{l}}{\partial c^{l}}\right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial s_{t}^{l}}{\partial I_{\tau}^{l}}\right) = \mathbb{E}[\varkappa_{t}^{l}]$$
Handling temporal dependency

$$\varkappa_{t}^{l} = \sum_{\tau} \frac{\partial s_{\tau}^{l}}{\partial I_{t}^{l}} = \left(\frac{\partial s_{t}^{l}}{\partial u_{t}^{l}} + \frac{\partial s_{t}^{l}}{\partial u_{t}^{l}}\right) = \left(\frac{\partial u_{t+1}^{l}}{\partial u_{t}^{l}} + \frac{\partial u_{t+1}^{l}}{\partial s_{t}^{l}} \frac{\partial s_{t}^{l}}{\partial u_{t}^{l}}\right)$$
Perivation of Rate-base Gradients
Rate-based Backpropagation
Error Back: $\left(\frac{\partial \mathcal{L}}{\partial c^{l}}\right)_{rate} = \left(\frac{\partial \mathcal{L}}{\partial c^{L}}\prod_{i=L-1}^{l} \left(\frac{\partial c^{i+1}}{\partial r^{i}} \left(\frac{\partial r^{i}}{\partial c^{i}}\right)_{rate}\right)\right) = \left(\frac{\partial \mathcal{L}}{\partial c^{L}}\prod_{i=L-1}^{l} \left(W^{i^{\top}}\mathbb{E}[\varkappa_{t}^{l}]\right)\right)$
Weights Descent: $(\nabla_{W^{l}}\mathcal{L})_{rate} \equiv \frac{\partial \mathcal{L}}{\partial c^{l}} \frac{\partial c^{l}}{\partial W^{l}} = \frac{\partial \mathcal{L}}{\partial c^{l}}r^{l-1^{\top}}$
Independent of the Temporal Dimension!!!

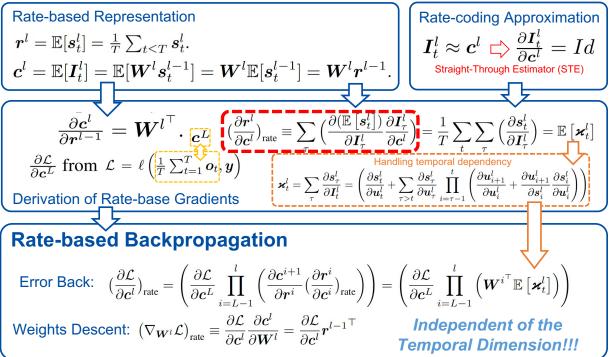


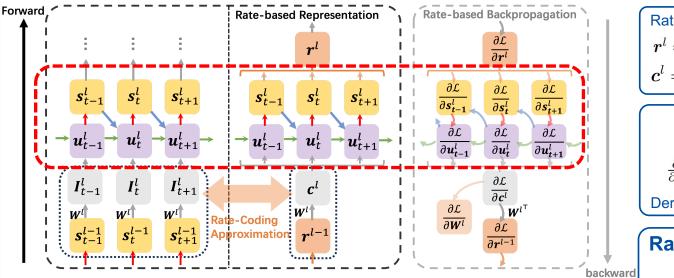
Forward Pass of Spiking Neural Networks with the Standard Iterative LIF Neurons $u_t^l = \lambda (u_{t-1}^l - V_{th}s_{t-1}^l) + W^l s_t^{l-1}, \quad s_t^l = H(u_t^l - V_{th}) \qquad I_t^l = W^l s_t^{l-1}$

$$\begin{aligned} \boldsymbol{r}^{l} &= \mathbb{E}[\boldsymbol{s}_{t}^{l}] = \frac{1}{T} \sum_{t < T} \boldsymbol{s}_{t}^{l}. \\ \boldsymbol{c}^{l} &= \mathbb{E}[\boldsymbol{I}_{t}^{l}] = \mathbb{E}[\boldsymbol{W}^{l} \boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \mathbb{E}[\boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \boldsymbol{r}^{l-1}. \end{aligned} \qquad \boldsymbol{I}_{t}^{l} \approx \boldsymbol{c}^{l} \qquad \frac{\partial \boldsymbol{I}_{t}^{l}}{\partial \boldsymbol{c}^{l}} = \boldsymbol{I} \boldsymbol{d} \end{aligned}$$

$$\frac{\partial \boldsymbol{c}^{l}}{\partial \boldsymbol{r}^{l-1}} = \boldsymbol{W}^{l^{\top}} \cdot \frac{\partial \boldsymbol{c}^{l}}{\partial \boldsymbol{c}^{l}}_{\text{rate}} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E} \left[\boldsymbol{s}_{t}^{l} \right])}{\partial \boldsymbol{I}_{\tau}^{l}} \frac{\partial \boldsymbol{I}_{\tau}^{l}}{\partial \boldsymbol{c}^{l}} \right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{I}_{\tau}^{l}} \right) = \mathbb{E} \left[\boldsymbol{\varkappa}_{t}^{l} \right]$$

$$u_t^l = \lambda (u_{t-1}^l - V_{\text{th}} s_{t-1}^l) + W^l s_t^{l-1}, \quad s_t^l = H(u_t^l - V_{\text{th}}) \qquad I_t^{l} = W^l s_t^{l-1}$$



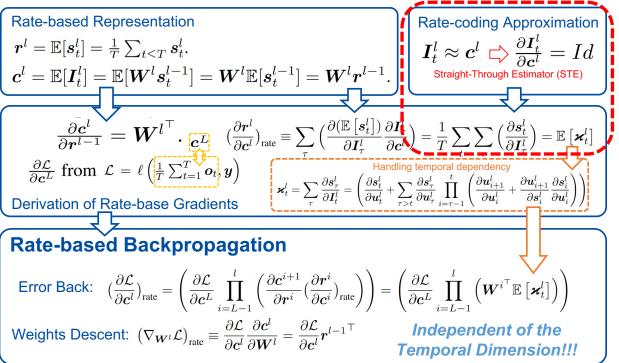


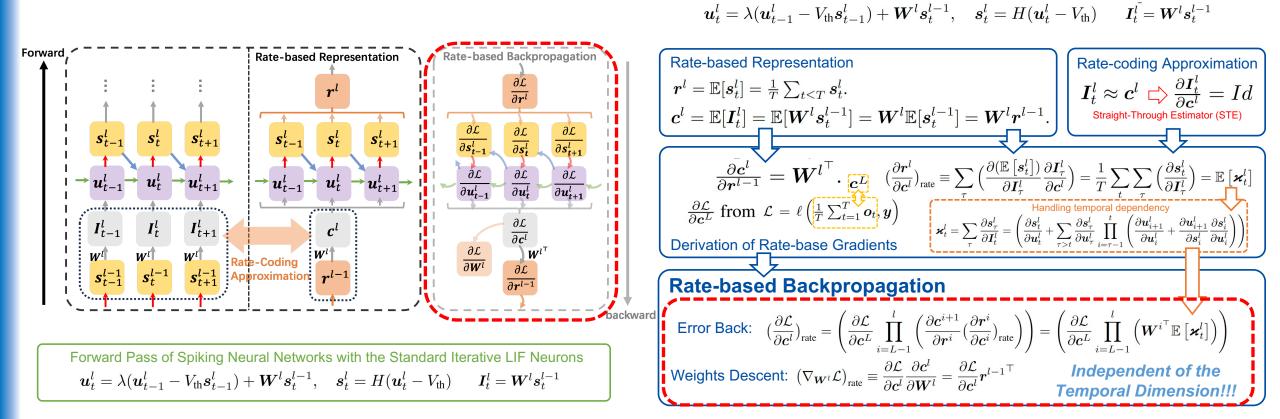
Forward Pass of Spiking Neural Networks with the Standard Iterative LIF Neurons $u_t^l = \lambda (u_{t-1}^l - V_{th}s_{t-1}^l) + W^l s_t^{l-1}, \quad s_t^l = H(u_t^l - V_{th}) \qquad I_t^l = W^l s_t^{l-1}$

$$\begin{aligned} \boldsymbol{r}^{l} &= \mathbb{E}[\boldsymbol{s}_{t}^{l}] = \frac{1}{T} \sum_{t < T} \boldsymbol{s}_{t}^{l}. \\ \boldsymbol{c}^{l} &= \mathbb{E}[\boldsymbol{I}_{t}^{l}] = \mathbb{E}[\boldsymbol{W}^{l} \boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \mathbb{E}[\boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \boldsymbol{r}^{l-1}. \end{aligned} \qquad \boldsymbol{I}_{t}^{l} \approx \boldsymbol{c}^{l} \qquad \frac{\partial \boldsymbol{I}_{t}^{l}}{\partial \boldsymbol{c}^{l}} = \boldsymbol{I} \boldsymbol{d} \end{aligned}$$

$$\overline{\partial \boldsymbol{c}^{l}} = \boldsymbol{W}^{l^{\top}} \cdot \overline{\boldsymbol{c}^{L}} (\frac{\partial \boldsymbol{r}^{l}}{\partial \boldsymbol{c}^{l}})_{\text{rate}} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E} \left[\boldsymbol{s}_{t}^{l} \right])}{\partial \boldsymbol{I}_{\tau}^{l}} \frac{\partial \boldsymbol{I}_{\tau}^{l}}{\partial \boldsymbol{c}^{l}} \right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{I}_{\tau}^{l}} \right) = \mathbb{E} \left[\boldsymbol{\varkappa}_{t}^{l} \right]$$

$$u_t^l = \lambda (u_{t-1}^l - V_{th} s_{t-1}^l) + W^l s_t^{l-1}, \quad s_t^l = H(u_t^l - V_{th}) \qquad I_t^{l} = W^l s_t^{l-1}$$





$$\begin{aligned} \boldsymbol{r}^{l} &= \mathbb{E}[\boldsymbol{s}_{t}^{l}] = \frac{1}{T} \sum_{t < T} \boldsymbol{s}_{t}^{l}. \\ \boldsymbol{c}^{l} &= \mathbb{E}[\boldsymbol{I}_{t}^{l}] = \mathbb{E}[\boldsymbol{W}^{l} \boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \mathbb{E}[\boldsymbol{s}_{t}^{l-1}] = \boldsymbol{W}^{l} \boldsymbol{r}^{l-1}. \end{aligned} \qquad \boldsymbol{I}_{t}^{l} \approx \boldsymbol{c}^{l} \qquad \frac{\partial \boldsymbol{I}_{t}^{l}}{\partial \boldsymbol{c}^{l}} = \boldsymbol{I} \boldsymbol{d} \end{aligned}$$

$$\frac{\partial \boldsymbol{c}^{l}}{\partial \boldsymbol{r}^{l-1}} = \boldsymbol{W}^{l^{\top}} \cdot \overline{\boldsymbol{c}^{L}} \left(\frac{\partial \boldsymbol{r}^{l}}{\partial \boldsymbol{c}^{l}} \right)_{\text{rate}} \equiv \sum_{\tau} \left(\frac{\partial (\mathbb{E} \left[\boldsymbol{s}_{t}^{l} \right])}{\partial \boldsymbol{I}_{\tau}^{l}} \frac{\partial \boldsymbol{I}_{\tau}^{l}}{\partial \boldsymbol{c}^{l}} \right) = \frac{1}{T} \sum_{t} \sum_{\tau} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{I}_{\tau}^{l}} \right) = \mathbb{E} \left[\boldsymbol{\varkappa}_{t}^{l} \right]$$

Backwards with Local Eligibility Traces

Local Iterative Eligibility Traces

$$\begin{aligned} \boldsymbol{e}_{t}^{l} &= \frac{1}{t}((t-1)\boldsymbol{e}_{t-1}^{l} + \boldsymbol{s}_{t}^{l}) \\ \boldsymbol{g}_{t}^{l} &= \frac{1}{t}((t-1)\boldsymbol{g}_{t-1}^{l} + \frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}}\boldsymbol{\rho}_{t}) \\ \boldsymbol{\rho}_{t}^{l} &= 1 + \boldsymbol{\rho}_{t-1}^{l} \left(\frac{\partial \boldsymbol{u}_{t}^{l}}{\partial \boldsymbol{u}_{t-1}^{l}} + \frac{\partial \boldsymbol{u}_{t}^{l}}{\partial \boldsymbol{s}_{t-1}^{l}} \frac{\partial \boldsymbol{s}_{t-1}^{l}}{\partial \boldsymbol{u}_{t-1}^{l}} \right) \end{aligned}$$

$$\begin{array}{l} \textbf{Eligibility Traces for Rate-based Representation} \\ \boldsymbol{e}_{t}^{l} = \frac{1}{t}((t-1)\boldsymbol{e}_{t-1}^{l} + \boldsymbol{s}_{t}^{l}) \textbf{r}^{l} = \boldsymbol{e}_{T}^{l} \\ \boldsymbol{g}_{t}^{l} = \frac{1}{t}((t-1)\boldsymbol{g}_{t-1}^{l} + \frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}}\boldsymbol{\rho}_{t}) \textbf{r}^{l} = \boldsymbol{e}_{T}^{l} \\ \boldsymbol{g}_{t}^{l} = \frac{1}{t}((t-1)\boldsymbol{g}_{t-1}^{l} + \frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}} \boldsymbol{\rho}_{t}) \textbf{r}^{l} = \mathbb{E}[\frac{\partial \boldsymbol{s}_{t}^{i}}{\partial \boldsymbol{u}_{t}^{l}}\boldsymbol{\rho}_{t}^{l}] = \mathbb{E}[\boldsymbol{\varkappa}_{t}^{l}] \\ \sum_{t} \boldsymbol{\varkappa}_{t}^{l} = \sum_{t} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}} + \sum_{\tau > t} \left(\frac{\partial \boldsymbol{s}_{\tau}^{l}}{\partial \boldsymbol{u}_{\tau}^{l}} \prod_{i=\tau-1}^{t} \left(\frac{\partial \boldsymbol{u}_{i+1}^{l}}{\partial \boldsymbol{u}_{i}^{l}} + \frac{\partial \boldsymbol{u}_{i+1}^{l}}{\partial \boldsymbol{s}_{i}^{l}} \frac{\partial \boldsymbol{s}_{i}^{l}}{\partial \boldsymbol{u}_{i}^{l}} \right) \right) \\ = \sum_{t} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}} \left(1 + \sum_{\tau < t} \prod_{i=t-1}^{\tau} \left(\frac{\partial \boldsymbol{u}_{i+1}^{l}}{\partial \boldsymbol{u}_{i}^{l}} + \frac{\partial \boldsymbol{u}_{i+1}^{l}}{\partial \boldsymbol{s}_{i}^{l}} \frac{\partial \boldsymbol{s}_{i}^{l}}{\partial \boldsymbol{u}_{i}^{l}} \right) \right) \right) = \sum_{t} \left(\frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}} \boldsymbol{\rho}_{t}^{l} \right) \end{aligned}$$

Backwards with Local Eligibility Traces

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{r}^{l}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{c}^{l+1}} \boldsymbol{W}^{l+1^{\top}}$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{c}^{l}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{r}^{l}} \boldsymbol{g}_{T}^{l}$$

$$\nabla_{\boldsymbol{W}^{l}} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{c}^{l}} (\boldsymbol{e}_{T}^{l-1})^{\top}$$

Algorithm 1: Single Training Iteration of the Rate-based Backpropagation **Input:** Timesteps T; Network depth L; Trainable parameters $\{W^l\}_{l \le L}$; Training Mini-batch $\{(x_t^0, y)\}$; Training Mode *rate*_S or *rate*_M. **Output:** Updated parameters $\{W^l\}_{l \le L}$ Initialize input spikes $s_t^0 = x_t^0$ for all $t \in [1, T]$. Initialize $\rho_0^l = 0$, $g_0^l = 0$, $e_0^l = 0$ for all $l \in [1, L]$. for t = 1 to T do for l = 1 to L do Compute input currents through linear operators $I_t^l = W^l s_t^{l-1}$; Initialize $\rho_0^l = 0, g_0^l = 0, e_0^l = 0;$ Compute output spikes s_t^l from I_t^l following neural dynamics in Eq. (1); Compute the eligibility trace $\rho_t^l = 1 + \rho_{t-1}^l \left(\frac{\partial u_t^l}{\partial u_{t-1}^l} + \frac{\partial u_t^l}{\partial s_{t-1}^l} \frac{\partial s_{t-1}^l}{\partial u_{t-1}^l} \right)$ in Eq. (8); Accumulate $e_t^l = \frac{1}{t}((t-1)e_{t-1}^l + s_t^l);$ Accumulate $\boldsymbol{g}_{t}^{l} = \frac{1}{t}((t-1)\boldsymbol{g}_{t-1}^{l} + \frac{\partial \boldsymbol{s}_{t}^{l}}{\partial \boldsymbol{u}_{t}^{l}}\boldsymbol{\rho}_{t});$ Save u_t^l , s_t^l for neuron states; Save g_t^l , e_t^l , ρ_t^l as eligibility traces. end

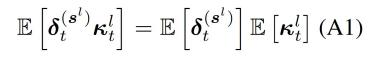
end

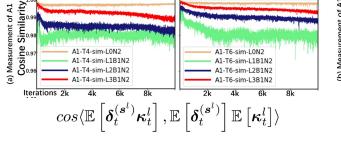
Compute the outputs gradient $\frac{\partial \mathcal{L}}{\partial c^L}$ from the objective function. **for** l = L - 1 to 1 **do** Compute error backpropagated through the linear part $\frac{\partial \mathcal{L}}{\partial r^l} = \frac{\partial \mathcal{L}}{\partial c^{l+1}} W^{l+1^{\top}}$; Compute error backpropagated through the neuron part $\frac{\partial \mathcal{L}}{\partial c^l} = \frac{\partial \mathcal{L}}{\partial r^l} g_T^l$; Compute the weight gradients $\nabla_{W^l} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial c^l} (e_T^{l-1})^{\top}$; Update parameters $\{W^l\}_{l \leq L}$ based on the gradient-based optimizer. **end**

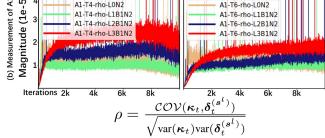
Connecting Error Backward to BPTT

Equivalent Conditions

Theorem 1. Given $\delta_t^{(s^l)} = \frac{\partial \mathcal{L}}{\partial s_t^l}$ that refers to gradients computed following the chain rule of BPTT in Eq. (2), and $\kappa_t^l = \sum_{\tau} \frac{\partial s_t^l}{\partial I_{\tau}^l}$ (where $\mathbb{E}[\kappa_t^l] = \mathbb{E}[\varkappa_t^l]$ in Eq. (6.7)), if $\mathbb{E}[\delta_t^{(s^l)}\kappa_t^l] = \mathbb{E}[\delta_t^{(s^l)}]\mathbb{E}[\kappa_t^l]$ holds for $\forall l$, we have $\mathbb{E}[\delta_t^{(s^l)}] = (\frac{\partial \mathcal{L}}{\partial r^l})_{rate}$. Furthermore, given $\delta_t^{(I^l)} = \frac{\partial \mathcal{L}}{\partial I_t^l}$, if $\mathbb{E}[\delta_t^{(I^l)}s_t^{l-1}] = \mathbb{E}[\delta_t^{(I^l)}]\mathbb{E}[s_t^{l-1}]$ for $\forall l$, we then obtain $(\nabla_{\mathbf{W}^l}\mathcal{L})_{rate} = \frac{1}{T}(\nabla_{\mathbf{W}^l}\mathcal{L})$. Here, $\mathbb{E}[x_t] = \frac{1}{T}\sum_t x_t$ refers the mean value of tensor x_t over temporal dimension T.







Bounded Approximation Errors

Theorem 2. For gradients $\delta_t^{(s^l)} = \frac{\partial \mathcal{L}}{\partial s_t^l}$ and $\kappa_t^l = \sum_{\tau} \frac{\partial s_t^l}{\partial I_{\tau}^l}$, given the approximation error bound $\epsilon > 0$ s.t. $\left\| \mathbb{E} \left[\delta_t^{(s^l)} \kappa_t^l \right] - \mathbb{E} \left[\delta_t^{(s^l)} \right] \mathbb{E} \left[\kappa_t^l \right] \right\| \le \epsilon (1 + \left\| \mathbb{E} \left[\delta_t^{(s^l)} \right] \right\|$) for $\forall l$. Denote the stacked tensor $\mathbf{I}^l = [\mathbf{I}_1^l, ..., \mathbf{I}_1^l]$ and $\mathbf{s}^l = [\mathbf{s}_1^l, ..., \mathbf{s}_T^l]$. Assuming the backward procedure follows non-expansivity s.t. $\frac{\partial \mathbf{I}^{l+1}}{\partial \mathbf{I}^l} = \mathbf{W}^{l+1} \frac{\partial \mathbf{s}_l^l}{\partial \mathbf{I}^l}$ is 1-lipschitz continuous without loss of generality and the biases are bounded uniformly by B, i.e. $\left\| \mathbf{x} \frac{\partial \mathbf{I}^{l+1}}{\partial \mathbf{I}^l} - \hat{\mathbf{x}} \frac{\partial \mathbf{I}^{l+1}}{\partial \mathbf{I}^l} \right\| \le \left\| \mathbf{x} - \hat{\mathbf{x}} \right\|$ for $\forall \mathbf{x}, \hat{\mathbf{x}}$. Define $\delta_{rate}^l = \left(\frac{\partial \mathcal{L}}{\partial \mathbf{c}^l} \right)_{rate}$ as the error propagated through Eq. (7), and $\delta_t^{(\mathbf{I}^l)} = \frac{\partial \mathcal{L}}{\partial \mathbf{I}_t^l}$ as the error propagated through BPTT, with $\delta_{rate}^L = \mathbb{E}[\delta_t^{(\mathbf{I}^L)}]$. We have the gradient difference bounded by $\left\| \delta_{rate}^{L-k} - \mathbb{E}[\delta_t^{(\mathbf{I}^{L-k})}] \right\| = \mathcal{O}(k^2\epsilon)$.

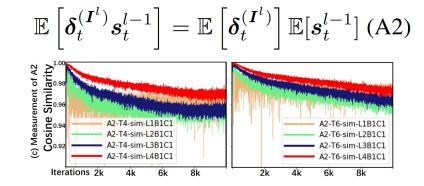
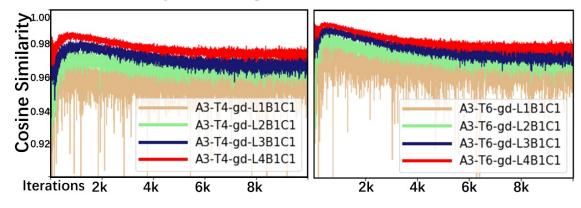


Figure 3: Empirical measurements conducted on the training procedure of BPTT. The experiments are carried out on the CIFAR-100 dataset using ResNet-18. Each subplot is labeled according to the naming convention "A{test#}-T{timesteps#}-{target}-L{layer#}B{block#}N{LIF#}/C{conv#}."

Results 1: Comparable to BPTT

Similarity of Weight Gradients with BPTT



Result 1: Rate-based backpropagation is comparable to BPTT on common visual benchmarks, with both methods exhibiting largely consistent gradient descent directions.

Performance Comparison with BPTT on CIFAR-10/100

Training	Model	Timesteps	Top-1 Acc (%)	Training	Model	Timesteps	Top-1 Acc (%)
BPTT _S	ResNet-18	2	95.02	_		2	76.24
		4	95.53		ResNet-18	4	77.72
		6	95.68			6	78.65
		2	96.12	BPTT _S		2	79.33
	ResNet-19	4	96.38	$\mathbf{D}\mathbf{F}11S$	ResNet-19	4	80.12
		6	96.57			6	80.77
		2	95.27			2	77.37
	VGG-11	4	95.61		VGG-11	4	77.82
		6	95.63			6	78.13
		2	94.82±0.07(94.89)			2	75.89±0.11(75.9
	ResNet-18	4	95.42±0.11(95.56)		ResNet-18	4	77.73±0.28(77.9
		6	95.73±0.03(95.78)			6	78.86±0.08(78.9
nata	ResNet-19	2	96.11±0.05(96.18)	mata	ResNet-19	2	79.71±0.02(79.7
rate _S		4	96.32±0.04(96.38)	$rate_S$		4	80.41±0.14(80.5
		6	96.38±0.06(96.45)			6	80.75±0.05(80.7
	VGG-11	2	95.44±0.02(95.46)		VGG-11	2	77.34±0.04(77.3
		4	95.57±0.08(95.68)			4	77.87±0.35(78.1
		6	95.64±0.12(95.76)			6	78.23±0.03(78.2
	ResNet-18	2	94.93		ResNet-18	2	77.09
		4	95.64			4	77.93
		6	96.03			6	78.35
$BPTT_M$	ResNet-19	2	96.16	$BPTT_M$		2	80.01
DFIIM		4	96.49	$\mathbf{D}\mathbf{I}\mathbf{I}\mathbf{I}M$	ResNet-19	4	81.07
		6	96.70			6	81.12
	VGG-11	2	95.31			2	77.42
		4	95.67		VGG-11	4	77.96
		6	95.64			6	78.25
	ResNet-18	2	$94.75{\pm}0.05(94.82)$			2	75.97±0.20(76.2
		4	95.61±0.02(95.64)		ResNet-18	4	78.26±0.12(78.3
rate _M		6	95.90±0.07(96.01)			6	79.02±0.11(79.1
	ResNet-19	2	96.23±0.10(96.33)	$rate_M$		2	79.87±0.03(79.9
		4	96.26±0.03(96.29)	1 atc _M	ResNet-19	4	80.71±0.12(80.8
		6	96.38±0.02(96.40)			6	80.83±0.07(80.9
	VGG-11	2	95.17±0.12(95.35)			2	77.40±0.05(77.4
		4	95.30±0.06(95.37)		VGG-11	4	77.86±0.03(77.8
		6	95.23±0.06(95.32)			6	77.99±0.11(78.1

Table 4: Performance comparison of rate-based backpropagation and BPTT on CIFAR-10. Table 5: Performance comparison of rate-based backpropagation and BPTT on CIFAR-100.

Results 2: SOTA on benchmarks

Results on CIFAR-10 and CIFAR-100 Datasets

	Training	Method	Model	Timesteps	Top-1 Acc (%)
	QCFS [7]	ANN2SNN	ResNet-18	8	94.82
	DSR [47]	one-step	PreAct-ResNet-18	20	95.10±0.15
	SSF [68]	one-step	PreAct-ResNet-18	20	94.90
	\mathbf{BPTT}_M	BPTT	ResNet-18	4	95.64
	$rate_M$ (ours)	one-step	ResNet-18	4	95.61±0.02(95.64)
2 10	OTTT [76]	online	VGG-11*	6	93.52 ± 0.06
CIFAR10	SLTT [48]	online	ResNet-18	6	94.44±0.21
CI	OS [89]	online	VGG-11 ResNet-19	4 4	94.35 95.20
_	BPTT _S	BPTT	ResNet-18	4	95.53
	DITIS	DITI	VGG-11	4	95.61
	rate $_S$ (ours)	one-step	ResNet-18	4	95.42±0.11(95.56)
	rates (ours)	one-step	VGG-11	4	95.57±0.08(95.68)
CIFAR100	DSR [47]	one-step	PreAct-ResNet-18	20	$78.50 {\pm} 0.12$
	SSF [68]	one-step	PreAct-ResNet-18	20	75.48
	\mathbf{BPTT}_M	BPTT	ResNet-18	4	77.93
	$rate_M$ (ours)	one-step	ResNet-18	4	78.26±0.12(78.38)
	OTTT [76]	online	VGG-11*	6	$71.05 {\pm} 0.04$
	SLTT [48]	online	ResNet-18	6	$74.38 {\pm} 0.30$
	OS [89]	online	VGG-11 ResNet-19	4 4	76.48 77.86
	BPTT _S	BPTT	ResNet-18	4	77.72
	DITIS	DITI	VGG-11	4	77.82
_	rate $_{S}$ (ours)	one-step	ResNet-18	4	77.73±0.28(77.93)
	rate _S (ours)	one-step	VGG-11	4	77.87±0.35(78.13)

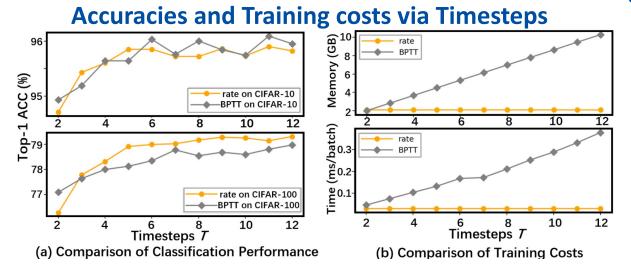
Table 1: Performance on ImageNet, and CIFAR10-DVS. Results are averaged over three runs of experiments, except for single crop evaluations on ImageNet. Models marked with (*) employ scaled weight standardization, adapting to normalizer-free architectures.

Results on ImageNet and CIFAR10-DVS Datasets

	-				
	Training	Method	Model	Timesteps	Top-1 Acc (%)
_	OTTT [76]	online	PreAct-ResNet-34*	6	65.15
	SLTT [48]	online	PreAct-ResNet-34*	6	66.19
		online	SEW-ResNet-34	4	64.14
let	OS [89]		PreAct-ResNet-34	4	67.54
ImageNet	SEW-ResNet [20]	BPTT	SEW-ResNet-34	4	67.04
lma	moto (ouma)	ana stan	SEW-ResNet-34	4	65.66
	$rate_{S}$ (ours)	one-step	PreAct-ResNet-34	4	69.58
	$rate_M$ (ours)	one-step	SEW-ResNet-34	4	65.84
			PreAct-ResNet-34	4	70.01
S	DSR [47]	one-step	VGG-11	20	77.27±0.24
	SSF [68]		VGG-11	20	78.0
DV	OTTT [76]	online	VGG-11*	10	76.63±0.34
10-]	SLTT [48]	omme	VGG-11	10	77.17 ± 0.23
AR _	$BPTT_S$	DDTT	VGG-11	10	76.73
CIFAR10-DVS	\mathbf{BPTT}_M	BPTT	VGG-11	10	76.86
0	$rate_{S}$ (ours)	one star	VGG-11	10	76.48±0.23(76.71)
	$rate_M$ (ours)	one-step	VGG-11	10	76.96±0.13(77.13)

Result 2: The Rate-based backpropagation can surpasses results among all SNNs efficient training methodologies on CIFAR-10/100, ImageNet, and CIFAR10-DVS datasets.

Results 3: Memory and time efficiency



Result 3: The backward costs of the Rate-based Backpropagation are independent of the number of timesteps set, which reduces training overhead significantly both in terms of memory and time, .

Comprehensive Evaluation of Training Costs

Deterret	Network	Matheal		Timesteps				
Datasets	Network	Method		T=1	T=2	T=4	T=8	T=16
		 	Time of Eligibility Track	0.003	0.004	0.007	0.015	0.027
			Time of Backward	0.034	0.035	0.036	0.034	0.036
		rate _M	Time of both	0.037	0.039	0.043	0.049	0.063
	D N . 10		Memory Allocated	1.8492	1.8488	1.8473	1.8496	1.848
	ResNet-18		Top-1 Acc [%]	74.60	76.04	78.24	79.24	79.37
			Time of Backward	0.023	0.044	0.098	0.199	0.564
		$BPTT_M$	Memory Allocated	1.4272	2.4454	4.4804	8.0460	15.68
			Top-1 Acc [%]	74.38	76.65	78.49	78.35	
		rate _M	Time of Eligibility Track	0.006	0.012	0.020	0.041	
			Time of Backward	0.083	0.083	0.082	0.083	
	ResNet-19		Time of both	0.089	0.095	0.102	0.124	
CIEA D 100			Memory Allocated [GB]	4.4787	4.4798	4.4788	4.4784	
CIFAR100			Top-1 Acc [%]	78.3	80.00	80.65	81.31	
		BPTT _M	Time of Backward	0.046	0.111	0.285	0.552	
			Memory Allocated [GB]	3.2556	5.6636	10.8978	20.3862	
			Top-1 Acc [%]	78.39	80.06	81.11	81.13	
	VGG11	rate _M	Time of Eligibility Track	0.003	0.003	0.006	0.011	0.020
			Time of Backward	0.017	0.017	0.017	0.017	0.018
			Time of both	0.020	0.020	0.023	0.028	0.038
			Memory Allocated [GB]	1.3624	1.3607	1.3619	1.3613	1.360
			Top-1 Acc [%]	76.13	77.59	77.75	78.34	78.65
			Time of Backward	0.010	0.021	0.054	0.135	0.384
			Memory Allocated [GB]	0.9911	1.6784	3.7363	6.6141	12.376
			Top-1 Acc [%]	76.34	77.20	77.98	78.26	78.37
	SEW-ResNet-34	rate _M	Time of Eligibility Track	0.012	0.014	0.023		
			Time of Backward	0.074	0.074	0.074		
			Time of both	0.086	0.088	0.097		
			Memory Allocated [GB]	5.7887	5.7898	5.7883		
ImageNet		BPTT_M	Time of Backward	0.046	0.095	0.233		
			Memory Allocated [GB]	3.9858	6.8654	12.5597		
	PreAct-ResNet-34	\mathbf{rate}_M	Time of Eligibility Track	0.007	0.009	0.020		
			Time of Backward	0.072	0.071	0.072		
			Time of both	0.079	0.080	0.092		
			Memory Allocated [GB]	5.4995	5.4982	5.4942		
		$BPTT_M$	Time of Backward	0.046	0.088	0.211		
			Memory Allocated [GB]	3.7017	6.4778	11.969		

Results 4: Rate-coding in statistics

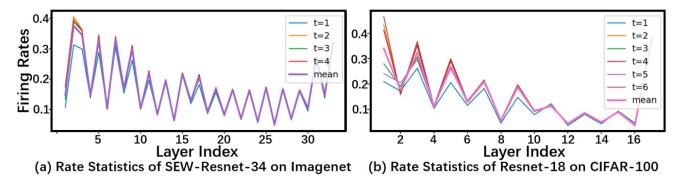
Result 4: Results on spike statistics confirmed that rate-coding information is the predominant form of spike representation.

Experiments on Spikes Temporal Shuffle

Table 2: Performance w/o and w/ temporal shuffle for models trained by $rate_M$

Dataset	Model	Timesteps	Accuracy	Shuffled	
		2	94.77	94.63±0.04	
	ResNet-18	4	95.51	95.50 ± 0.04	
CIFAR-10		6	95.97	$95.95 {\pm} 0.09$	
CIFAR-10		2	95.13	95.10 ± 0.05	
	VGG-11	4	95.37	95.37 ± 0.03	
		6	95.77	$95.79 {\pm} 0.05$	
2		2	76.27	75.59 ± 0.11	
	ResNet-18	4	78.32	77.72 ± 0.15	
CIFAR-100		6	79.10	79.10 ± 0.14	
CIFAK-100		2	77.46	77.21 ± 0.12	
	VGG-11	4	77.88	77.78 ± 0.16	
		6	77.97	78.02 ± 0.09	
ImageNet	SEW-ResNet-34	4	65.84	65.11±0.11	
imagemet	PreAct-ResNet-34	4	70.01	$69.78 {\pm} 0.10$	
CIFAR10-DVS	VGG-11	10	76.50	74.69 ± 0.17	

Firing Rates Statistics



Take-home Message

A new SNNs training method that requires spatial backward only once:

- Demonstrates the pivotal role of rate-coding representation within current SNNs.
- Not alter the SNNs backbone, making backward costs independent of timestep T.
- Reduces memory and time costs while maintaining performance comparable to BPTT.
- Theoretical analysis and empirical validation confirm the optimization guarantees.
- Paves a way for more scalable and resource-efficient training of SNNs.

THANK YOU!

Contact Us

chengting.21@intl.zju.edu.cn ailiwang@intl.zju.edu.cn

