Regularized Adaptive Momentum Dual Averaging with an Efficient Inexact Subproblem Solver for Training Structured Neural Network

HUANG Zih-Syuan, LEE Ching-pei r11922210@ntu.edu.tw, chingpei@ism.ac.jp

The Institute of Statistical Mathematics

- We aim to train neural network models with a certain structure
- Achieved by adding a regularizer to training/optimization objective
- Examples (regularizer in the bracket):
 - Structured or unstructured sparsity ($\ell_1\text{-norm}$ or group-LASSO norm)
 - Binary/discrete neural networks (indicator function of the feasible set, or penalty for violating constraints)
 - Low-rank structure at each layer (nuclear norm)

- We propose RAMDA: Adaptiveness + Momentum + Regularized Dual Averaging
- Adaptiveness: Better generalization ability for various modern models including transformers
- Dual averaging: Asymptotic variance reduction with low cost
- Guaranteed to find a locally optimal structure
- Superior empirical performance over state of the art for structured sparsity with competitive running time

- Adaptiveness + regularizer: subproblem may not have a closed-form solution
- Proposal: using the subgradient of the subproblem objective as a measurable stopping condition
- Solve the subproblem approximately using proximal gradient
- Efficiet computation and rapid convergence for the subproblems
- Retains the guarantees for structure identification and convergence of the whole algorithm

Weighted group sparsity and validation accuracy on ${\sf ImageNet}/{\sf ResNet50}.$

Algorithm	Accuracy	Sparsity
RAMDA	$74.53 \pm 0.10\%$	$29.19\pm0.94\%$
RMDA (ICLR'22)	$74.47\pm0.08\%$	$25.20\pm1.69\%$
ProxSGD (ICLR'20)	$73.50\pm0.20\%$	$17.54\pm1.26\%$
ProxGen (NeurIPS'21)	$74.17\pm0.08\%$	$20.29\pm0.22\%$

Weighted group sparsity and validation perplexity on Transformer-XL with WikiText-103.

Alg.	Perplexity	Sparsity	Time/epoch
RAMDA	26.97 ± 0.10	$36.2\pm0.3\%$	$6954\pm30 \mathrm{s}$
RMDA (ICLR'22)	27.10 ± 0.08	$36.0\pm2.7\%$	$6184 \pm 20 \mathrm{s}$
ProxSGD (ICLR'20)	27.42 ± 0.02	$33.1\pm1.5\%$	$6167 \pm 12 \mathrm{s}$
ProxGen (NeurIPS'21)	27.49 ± 0.19	$30.5\pm0.6\%$	$\rm 6652 \pm 21 s$

Weighted group sparsity and validation loss on Tacotron2 with LJSpeech.

Alg.	Loss	Sparsity	Time/epoch
RAMDA	0.44 ± 0.01	$52.9\pm1.6\%$	$443 \pm 1 \text{s}$
RMDA (ICLR'22)	0.46 ± 0.01	$45.9\pm1.7\%$	$431\pm2s$
ProxSGD (ICLR'20)	0.50 ± 0.00	$34.3\pm1.6\%$	431 ± 0 s
ProxGen (NeurIPS'21)	0.45 ± 0.01	$45.6\pm0.9\%$	$438 \pm 2 \mathrm{s}$