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Structured Neural Networks

We aim to train neural network models with a certain structure

Achieved by adding a regularizer to training/optimization objective
Examples (regularizer in the bracket):
- Structured or unstructured sparsity (ℓ1-norm or group-LASSO norm)

- Binary/discrete neural networks (indicator function of the feasible set,
or penalty for violating constraints)

- Low-rank structure at each layer (nuclear norm)

HUANG Zih-Syuan, LEE Ching-pei Regularized Adaptive Momentum Dual Averaging with an Efficient Inexact Subproblem Solver for Training Structured Neural Network1 / 6



Our Method

We propose RAMDA: Adaptiveness + Momentum + Regularized
Dual Averaging

Adaptiveness: Better generalization ability for various modern
models including transformers

Dual averaging: Asymptotic variance reduction with low cost

Guaranteed to find a locally optimal structure

Superior empirical performance over state of the art for structured
sparsity with competitive running time
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Inexact Subproblem Solver

Adaptiveness + regularizer: subproblem may not have a closed-form
solution

Proposal: using the subgradient of the subproblem objective as a
measurable stopping condition

Solve the subproblem approximately using proximal gradient

Efficiet computation and rapid convergence for the subproblems

Retains the guarantees for structure identification and convergence
of the whole algorithm
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Results: Group Sparsity – Vision

Weighted group sparsity and validation accuracy on
ImageNet/ResNet50.

Algorithm Accuracy Sparsity
RAMDA 74.53 ± 0.10% 29.19 ± 0.94%
RMDA (ICLR’22) 74.47 ± 0.08% 25.20 ± 1.69%
ProxSGD (ICLR’20) 73.50 ± 0.20% 17.54 ± 1.26%
ProxGen (NeurIPS’21) 74.17 ± 0.08% 20.29 ± 0.22%
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Results: Group Sparsity – Language Modeling

Weighted group sparsity and validation perplexity on Transformer-XL
with WikiText-103.

Alg. Perplexity Sparsity Time/epoch
RAMDA 26.97 ± 0.10 36.2 ± 0.3% 6954 ± 30s
RMDA (ICLR’22) 27.10 ± 0.08 36.0 ± 2.7% 6184 ± 20s
ProxSGD (ICLR’20) 27.42 ± 0.02 33.1 ± 1.5% 6167 ± 12s
ProxGen (NeurIPS’21) 27.49 ± 0.19 30.5 ± 0.6% 6652 ± 21s
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Results: Group Sparsity – Speech Synthesis

Weighted group sparsity and validation loss on Tacotron2 with
LJSpeech.

Alg. Loss Sparsity Time/epoch
RAMDA 0.44 ± 0.01 52.9 ± 1.6% 443 ± 1s
RMDA (ICLR’22) 0.46 ± 0.01 45.9 ± 1.7% 431 ± 2s
ProxSGD (ICLR’20) 0.50 ± 0.00 34.3 ± 1.6% 431 ± 0s
ProxGen (NeurIPS’21) 0.45 ± 0.01 45.6 ± 0.9% 438 ± 2s
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