

Assembly Fuzzy Representation on Hypergraph for Open-Set 3D Object Retrieval

Motivation

Framework

Detailed Methods

Datasets

Dataset		OP-SHNP	OP-INTRA	OP-COSEG	
Average Pa	arts/Sample	3.2	3.1	2.3	
	All	16	3	9	
Category	Seen	6	1	3	
	Unseen	10	2	6	
	Train	5804	116	240	
Number	Retrieval	6142	2318	802	
	Query	945	302	85	
	Target	5197	2016	717	

Metrics

- Average Precision (mAP)
- Normalized Discounted Cumulative Gain (NDCG)
- Average Normalized Modified Retrieval Rank (ANMRR)
- Precision-Recall Curve (PR-Curve)

Rertrieval Performance

Method	OP-SHNP			OP-INTRA			OP-COSEG			
	mAP↑	NDCG↑	ANMRR↓	mAP↑	NDCG↑	ANMRR↓	mAP↑	NDCG↑	ANMRR↓	
MMJN	0.5685	0.5856	0.2599	0.5465	0.5898	0.5053	0.6394	0.7623	0.4314	
TCL	0.5683	0.5861	0.2608	0.5467	0.5970	0.5059	0.6285	0.7543	0.4401	
SDML	0.5699	0.5870	0.2593	0.5456	0.5944	0.5064	0.6328	0.7638	0.4422	
MMSAE	0.5637	0.5824	0.2659	0.5452	0.5919	0.5056	0.6350	0.7555	0.4334	
PROSER	0.5687	0.5861	0.2607	0.5462	0.5943	0.5059	0.6343	0.7605	0.4348	
HGM ² R	0.5736	0.5886	0.2549	0.5545	0.6019	0.4928	0.6452	0.7627	0.4355	
Ours	0.5947	0.5916	0.2239	0.5750	0.6382	0.4797	0.7015	0.7629	0.3604	

(a) PR Curve on OP-SHNP.

(b) PR Curve on OP-INTRA.

(c) PR Curve on OP-COSEG.

Ablation Studies

Ablation	OP-SHNP			OP-INTRA			OP-COSEG		
	mAP↑	NDCG↑	ANMRR↓	mAP↑	NDCG↑	ANMRR↓	mAP↑	NDCG↑	ANMRR↓
HIConv→GIN	0.5761	0.5826	0.2465	0.5567	0.6050	0.4947	0.6782	0.7625	0.4001
HIConv→MLP	0.5837	0.5854	0.2357	0.5523	0.6035	0.4948	0.6505	0.7664	0.4334
IAE w/o \mathcal{L}_{as}	0.5767	0.5838	0.2464	0.5560	0.6077	0.4946	0.6829	0.7542	0.3823
IAE w/o \mathcal{L}_{xp}	0.5767	0.5840	0.2464	0.5561	0.6078	0.4944	0.6828	0.7542	0.3824
SFR w/o \mathcal{G}_{lev}	0.5755	0.5825	0.2474	0.5545	0.6019	0.4928	0.6887	0.7540	0.3768
MLP-based SFR	0.5636	0.5851	0.2665	0.5429	0.5814	0.4997	0.6662	0.7610	0.4062
GCN-based SFR	0.5679	0.5845	0.2603	0.5430	0.5854	0.4982	0.6674	0.7618	0.4072
IAE+SFR	0.5947	0.5916	0.2239	0.5750	0.6382	0.4797	0.7015	0.7629	0.3604

(a) PR Curve on OP-SHNP.

(b) PR Curve on OP-INTRA.

(c) PR Curve on OP-COSEG.

Conclusion

■ In this paper, we introduce the Hypergraph-Based Assembly Fuzzy Representation (HARF) framework, which navigates the intricacies of open-set 3D object retrieval through a bottom-up lens of *Part Assembly*. Specifically, we propose the Hypergraph Isomorphism Convolusion (HIConv) and adopt the Isomorphic Assembly Embedding (IAE) module for assembly isomorphism and unification, generating the integration embeddings with geometric-semantic consistency. Besides, we employ the Structure Fuzzy Reconstruction (SFR) approach to exploit high-order correlations among objects and fuzzify representations for open-set category generalization. This module constructs a leveraged hypergraph based on local-certainty and global-uncertainty correlations to mitigate distribution skew. We construct three open-set retrieval datasets for 3D objects with part-level annotations, *i.e.*, OP-SHNP, OP-INTRA, and OP-COSEG. Extensive experiments and ablation studies on these three benchmarks show our method outperforms current state-of-the-art methods. However, due to data limitations, this paper does not currently consider the assembly fuzzy representation for varying numbers of parts, which will be a focus of our future research. We believe this paper provides a novel perspective for open-set retrieval by exploring from local to global levels.