

Enhancing Semi-Supervised Learning via Representative and Diverse Sample Selection

Qian Shao^{*}, Jiangrui Kang^{*}, Qiyuan Chen^{*}, Zepeng Li, Hongxia Xu, Yiwen Cao, Jiajuan Liang[†], Jian Wu[†]

Paper: https://arxiv.org/abs/2409.11653

Code: https://github.com/YanhuiAILab/RDSS

Backgrounds

NEURAL INFORMATION PROCESSING SYSTEMS

The prevailing sample selection methods have many shortcomings.

Sampling methods in SSL:

- Random sampling may introduce imbalanced class distributions
- Stratified sampling is impractical in real-world scenarios
- Representativeness or diversity only sampling (see Fig. 1)

Fig. 1. Visualization of selected samples from a dog dataset using representativeness or diversity sampling methods.

Sampling methods in AL/SSAL:

- Begin with random samples
- Coupled with model training
- Human in the loop

Fig. 2. AL-based sampling methods.

Methods

Strategy: *α*-<u>M</u>aximum <u>M</u>ean <u>D</u>iscrepancy

- Our goal can be formulated by solving: $\max_{\mathcal{I}_m \subset [n]} \operatorname{Rep}(X_{\mathcal{I}_m}, X_n) + \lambda \operatorname{Div}(X_{\mathcal{I}_m}, X_n)$, where $\operatorname{Rep}(\cdot, \cdot)$ and $\operatorname{Div}(\cdot, \cdot)$ quantify the representativeness and diversity of subdata respectively, and λ is a hyperparameter to balance the trade-off between representativeness and diversity.
- Quantification of representativeness and diversity

$$\operatorname{Rep}(X_{\mathcal{I}_{m}}, X_{n}) = -\operatorname{MMD}_{k}^{2}(X_{\mathcal{I}_{m}}, X_{n})$$

$$= -\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} k(\mathbf{x}_{i}, \mathbf{x}_{j}) - \frac{1}{m^{2}} \sum_{i \in \mathcal{I}_{m}} \sum_{j \in \mathcal{I}_{m}} k(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{2}{mn} \sum_{i=1}^{n} \sum_{j \in \mathcal{I}_{m}} k(\mathbf{x}_{i}, \mathbf{x}_{j}), \quad (1)$$

$$\operatorname{Div}(X_{\mathcal{I}_{m}}, X_{n}) = -S_{k}(X_{\mathcal{I}_{m}}) = -\frac{1}{m^{2}} \sum_{i \in \mathcal{I}_{m}} \sum_{j \in \mathcal{I}_{m}} k(\mathbf{x}_{i}, \mathbf{x}_{j}), \quad (2)$$

where $k(\cdot, \cdot)$ is a kernel function on $\mathcal{X} \times \mathcal{X}$. Our optimization objective becomes:

$$\min_{\mathcal{I}_m \subset [n]} \mathsf{MMD}_k^2(X_{\mathcal{I}_m}, X_n) + \lambda S_k(X_{\mathcal{I}_m}).$$
(3)

Methods

Strategy: *α*-<u>Maximum Mean Discrepancy</u>

Set $\lambda = \frac{1-\alpha}{\alpha m}$, since $\sum_{i=1}^{n} \sum_{j=1}^{n} k(\mathbf{x}_i, \mathbf{x}_j)$ is a constant, the objective function in (3) can be rewritten by $\alpha \text{MMD}_k^2(X_{\mathcal{I}_m}, X_n) + \frac{1-\alpha}{m} S_k(X_{\mathcal{I}_m}) + \frac{\alpha(\alpha-1)}{n^2} \sum_{i=1}^n \sum_{j=1}^n k(\mathbf{x}_i, \mathbf{x}_j)$ $= \frac{\alpha^{2}}{n^{2}} \sum_{i=1}^{n} \sum_{i=1}^{n} k(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{m^{2}} \sum_{i \in \mathcal{T}} \sum_{i \in \mathcal{T}} k(\mathbf{x}_{i}, \mathbf{x}_{j}) - \frac{2\alpha}{mn} \sum_{i=1}^{n} \sum_{i \in \mathcal{T}} k(\mathbf{x}_{i}, \mathbf{x}_{j})$ $= \sup_{\|f\|_{\mathcal{H}\leq 1}} \left(\frac{1}{m} \sum_{i \in \mathcal{I}} f(\mathbf{x}_i) - \frac{\alpha}{n} \sum_{i=1}^n f(\mathbf{x}_j) \right)^2,$ (4)

which defines a new concept called α -MMD, denoted by $MMD_{k,\alpha}(X_{\mathcal{I}_m}, X_n)$.

Algorithm: Modified Frank-Wolfe

• Theorem

With mild assumption on kernel and unlabeled data, $\min_{\mathcal{I}_m \subset [n]} MMD_k^2(X_{\mathcal{I}_m}, X_n)$ can be solved by Frank-Wolfe algorithm with the following iterating formula:

$$\mathbf{x}_{i_{p+1}^*} \in \underset{i \in [n]}{\operatorname{argmin}} f_{\mathcal{I}_p^*}(\mathbf{x}_i), \ \mathcal{I}_{p+1}^* \leftarrow \mathcal{I}_p^* \cup \{i_{p+1}^*\}, \mathcal{I}_0 = \emptyset,$$
(5)
where $f_{\mathcal{I}_p^*}(\mathbf{x}_i) = \sum_{j \in \mathcal{I}_p} k(\mathbf{x}_i, \mathbf{x}_j) - \alpha p \sum_{l=1}^n k(\mathbf{x}_i, \mathbf{x}_l).$

The corresponding algorithm of Eq. (5) may select repeated samples. To address this issue, we propose the Generalized Kernel Herding without Replacement (GKHR) algorithm based on Eq. (5):

$$\mathbf{x}_{i_{p+1}^*} \in \operatorname*{argmin}_{i \in [n] \setminus \mathcal{I}_p^*} f_{\mathcal{I}_p^*}(\mathbf{x}_i), \ \mathcal{I}_{p+1}^* \leftarrow \mathcal{I}_p^* \cup \{i_{p+1}^*\}, \mathcal{I}_0^* = \emptyset.$$

Table 1. Comparison with other sampling methods, when applied to FlexMatch/FreeMatch.

Dataset	CIFAR-10		CIFAR-100			SVHN		STL-10		
Budget	40	250	4000	400	2500	10000	250	1000	40	250
Applied to Flex	Match [60]									
Stratified	91.45 ± 3.41	95.10 ± 0.25	95.63±0.24	50.23 ± 0.41	67.38 ± 0.45	73.61 ± 0.43	89.60±1.86	93.66±0.49	75.33±3.74	92.29 ± 0.64
Random	$87.30{\pm}4.61$	$93.95 {\pm} 0.91$	$95.17 {\pm} 0.59$	45.58 ± 0.97	$66.48 {\pm} 0.98$	72.61 ± 0.83	87.67±1.16	94.06 ± 1.14	65.81±1.21	$90.70 {\pm} 0.79$
k-Means	81.23 ± 8.71	$94.59 {\pm} 0.51$	$95.09 {\pm} 0.65$	41.60 ± 1.24	$65.99 {\pm} 0.57$	71.53 ± 0.42	90.28 ± 0.69	$\overline{93.82 \pm 1.04}$	55.43±0.39	$90.64{\pm}1.05$
USL [48]	91.73±0.13	$94.89 {\pm} 0.20$	95.43±0.15	46.89 ± 0.46	66.75 ± 0.37	$72.53 {\pm} 0.32$	$\overline{90.03 \pm 0.63}$	$93.10{\pm}0.78$	75.65 ± 0.60	90.77±0.36
ActiveFT 55	70.87 ± 4.14	$\overline{93.85 \pm 1.37}$	95.31 ± 0.75	$\overline{25.69 \pm 0.64}$	$\overline{57.19 \pm 2.06}$	$70.96 {\pm} 0.75$	89.32±1.87	$92.53 {\pm} 0.43$	$\overline{55.57 \pm 1.42}$	$\overline{87.28 \pm 1.19}$
RDSS (Ours)	94.69 <u>±0.28</u>	95.21±0.47	$95.71{\pm}0.10$	48.12±0.36	$67.27{\pm}0.55$	$73.21{\pm}0.29$	91.70±0.39	$95.70{\pm}0.35$	77.96±0.52	93.16±0.41
Applied to Free	Match [51]									
Stratified	95.05 ± 0.15	95.40 ± 0.23	$95.80 {\pm} 0.29$	51.29 ± 0.56	67.69 ± 0.58	73.90 ± 0.53	92.58±1.05	94.22 ± 0.78	79.16±5.01	91.36 ± 0.18
Random	93.41±1.24	$93.98 {\pm} 0.91$	$95.56 {\pm} 0.17$	47.16 ± 1.25	66.09 ± 1.08	$72.09 {\pm} 0.99$	91.62 ± 1.88	$94.40{\pm}1.28$	76.66 ± 2.43	90.72 ± 0.97
k-Means	88.05 ± 5.07	$94.80{\pm}0.48$	95.51±0.37	44.07 ± 1.94	66.09 ± 0.39	$71.69 {\pm} 0.72$	93.30±0.46	94.68 ± 0.72	63.22±4.92	89.99±0.87
USL [48]	93.81±0.62	$95.19{\pm}0.18$	$95.78 {\pm} 0.29$	47.07±0.78	66.92 ± 0.33	$72.59 {\pm} 0.36$	93.36±0.53	94.44 ± 0.44	76.95 ± 0.86	$90.58 {\pm} 0.58$
ActiveFT 55	78.13 ± 2.87	$\overline{94.54 \pm 0.81}$	$\overline{95.33 \pm 0.53}$	26.67±0.46	$\overline{56.23 \pm 0.85}$	$\overline{71.20 \pm 0.68}$	$\overline{92.60\pm0.51}$	$93.71 {\pm} 0.54$	$\overline{63.31 \pm 2.99}$	$86.60{\pm}0.30$
RDSS (Ours)	95.05±0.13	95.50±0.20	95.98±0.28	48.41±0.59	$67.40{\pm}0.23$	73.13±0.19	94.54±0.46	95.83±0.37	81.90±1.72	92.22±0.40

Experiments

Dataset	CIFA	R-10	CIFAR-100		
Budget	7500	10000	7500	10000	
CoreSet	85.46	87.56	47.17	53.06	
VAAL	86.82	88.97	47.02	53.99	
LearnLoss	85.49	87.06	47.81	54.02	
MCDAL	87.24	89.40	49.34	<u>54.14</u>	
SL+RDSS (Ours)	<u>87.18</u>	89.77	50.13	56.04	
Whole Dataset	95	.62	78.83		

Table 2. Comparison with AL approaches.

Table 3. Comparison with SSAL approaches.

Method	FlexMatch	FreeMatch
Stratified Random	91.45 87.30	95.05 93.41
CoreSetSSL	87.66 ↑ 0.36	91.24 ↓ 2.17
MMA CBSSAL	$74.61 \downarrow 12.69$ $86.58 \downarrow 0.72$	$87.37 \downarrow 6.04$ $91.68 \downarrow 1.73$
TOD-Semi	86.21 1.09	90.77 1 2.64
RDSS (Ours)	94.69 † 7.39	95.05 ↑ 1.64

Table 4. Effect of different α .

Dataset		CIFAR-10			CIFAR-100	
Budget (m)	40	250	4000	400	2500	10000
0	85.54±0.48	93.55±0.34	94.58±0.27	39.26±0.52	63.77±0.26	71.90±0.17
0.40	92.28±0.24	93.68±0.13	94.95 ± 0.12	42.56 ± 0.47	65.88 ± 0.24	71.71±0.29
0.80	94.42±0.49	94.94±0.37	95.15 ± 0.35	45.62 ± 0.35	66.87 ± 0.20	72.45 ± 0.23
0.90	94.33±0.28	95.03±0.21	95.20 ± 0.42	48.12 ± 0.50	67.14 ± 0.16	72.15 ± 0.23
0.95	94.44±0.64	$95.07 {\pm} 0.26$	95.45 ± 0.38	48.41±0.59	67.11±0.29	72.80 ± 0.35
0.98	94.51±0.39	$\overline{95.02 \pm 0.15}$	95.31±0.44	48.33±0.54	67.40±0.23	72.68 ± 0.22
1	94.53±0.42	$95.01{\pm}0.23$	$95.54{\pm}0.25$	$\overline{48.18 \pm 0.36}$	67.20 ± 0.29	$\underline{73.05{\pm}0.18}$
$1-1/\sqrt{m}$ (Ours)	95.05±0.13	95.50±0.20	95.98±0.28	48.41±0.59	67.40±0.23	73.13±0.19

Thanks!

Code

