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Backgrounds

The prevailing sample selection methods have many shortcomings.

a) Representativeness only

…

b) Diversity only

…

Fig. 1. Visualization of selected samples from a dog dataset 
using representativeness or diversity sampling methods.

Sampling methods in SSL:
• Random sampling may introduce

imbalanced class distributions
• Stratified sampling is impractical in 

real-world scenarios
• Representativeness or diversity only 

sampling (see Fig. 1)



Backgrounds

Sampling methods in AL/SSAL:
• Begin with random samples
• Coupled with model training
• Human in the loop

Fig. 2. AL-based sampling methods.
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Methods
Strategy: 𝜶-Maximum Mean Discrepancy

• Our goal can be formulated by solving: max
ℐ!⊂[$]

Rep(𝑋ℐ! , 𝑋$) + 𝜆Div(𝑋ℐ! , 𝑋$),

• Quantification of representativeness and diversity
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where Rep 8,8  and Div 8,8 quantify the representativeness and diversity of subdata respectively,
and 𝜆 is a hyperparameter to balance the trade-off between representativeness and diversity.

Rep 𝑋ℐ! , 𝑋$ = −MMD&' 𝑋ℐ! , 𝑋$

where 𝑘 8,8  is a kernel function on 𝒳×𝒳. Our optimization objective becomes:
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MMD&'(𝑋ℐ! , 𝑋$) + 𝜆𝑆&(𝑋ℐ!).
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Methods

Strategy: 𝜶-Maximum Mean Discrepancy

Set 𝜆 = ,-.
./

, since ∑(+,$ ∑*+,$ 𝑘(x(, x*) is a constant, the objective function in (3) can be rewritten by
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which defines a new concept called 𝛼-MMD, denoted by MMD&,.(𝑋ℐ! , 𝑋$).

(4)



Methods

Algorithm: Modified Frank-Wolfe

• Theorem

With mild assumption on kernel and unlabeled data, min
ℐ!⊂[$]

MMD&'(𝑋ℐ! , 𝑋$) can be solved by Frank-

Wolfe algorithm with the following iterating formula:

x(%&$∗ ∈ argmin
(∈ $

𝑓ℐ%∗ x( , 	ℐ23,
∗ ← ℐ2∗ ∪ 𝑖23,∗ , ℐ5 = ∅,

where 𝑓ℐ%∗ x( = ∑*∈ℐ% 𝑘 x(, x* − 𝛼𝑝∑6+,$ 𝑘(x(, x6).

(5)

The corresponding algorithm of Eq. (5) may select repeated samples. To address this issue, we propose
the Generalized Kernel Herding without Replacement (GKHR) algorithm based on Eq. (5):

x(%&$∗ ∈ argmin
(∈ $ \ℐ%∗

𝑓ℐ%∗ x( , 	ℐ23,
∗ ← ℐ2∗ ∪ 𝑖23,∗ , ℐ5∗ = ∅.



Experiments

Table 1. Comparison with other sampling methods, when applied to FlexMatch/FreeMatch.



Experiments

Table 2. Comparison with AL approaches. Table 3. Comparison with SSAL approaches.

Table 4. Effect of different 𝛼.
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