

Advances in Neural Information Processing Systems (NeurIPS), 2024



## Beyond Redundancy: Information-aware Unsupervised Multiplex Graph Structure Learning

Zhixiang Shen<sup>1</sup>, Shuo Wang<sup>1</sup>, Zhao Kang<sup>1</sup>

<sup>1</sup>University of Electronic Science and Technology of China



Paper



Github InfoMGF

# **Backgrounds of Multiplex Graph**

## What is multiplex graph?

A special type of *multi-relational heterogeneous graph* with multiple graph layers span across a common set of nodes.



**Unsupervised Multiplex Graph Learning (UMGL):** Learn node representations by leveraging diverse graph structures and features without manual labeling.

Applications: Biological Network Analysis, Social Network Mining, Recommendation Systems.....

[1] Jing B, Park C, Tong H. Hdmi: High-order deep multiplex infomax. Proceedings of the Web Conference (WWW), 2021.

[2] Qian X, Li B, Kang Z. Upper Bounding Barlow Twins: A Novel Filter for Multi-Relational Clustering. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2024.

# **Backgrounds of Multiplex Graph**

### Overlooked Aspects of Unsupervised Multiplex Graph Learning

#### 1) The reliability of graph structure

Task-irrelevant information:

irrelevant, heterophilic, and missing edges

#### 2) Multiplex graph non-redundancy

Shared task-relevant information:

homophilic edges common to all graphs

Unique task-relevant information:

homophilic edges appear only in a certain graph

beyond graph-fixed methods



## **Motivation**

#### Theoretical Definition

**Multiplex Graph Non-redundancy:** Task-relevant information exists not only in the shared information between graphs but also potentially within the unique information of certain graphs.

**Definition 1.**  $G_i$  is considered non-redundant with  $G_j$  for Y if and only if there exists  $\epsilon > 0$  such that the conditional mutual information  $I(G_i; Y | G_j) > \epsilon$  or  $I(G_j; Y | G_i) > \epsilon$ .

### Empirical Study



| Dataset Nodes |         | Relation type                                                                                            | Edges                             | Unique relevant<br>edge ratio (%) |  |  |
|---------------|---------|----------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--|--|
| ACM           | 3,025   | Paper-Author-Paper (PAP)<br>Paper-Subject-Paper (PSP)                                                    | 26,416<br>2,197,556               | 38.08<br>99.05                    |  |  |
| DBLP          | 2,957   | Author-Paper-Author (APA)<br>Author-Paper-Conference-Paper-Author (APCPA)                                | 2,398<br>1,460,724                | 0<br>99.82                        |  |  |
| Yelp          | 2,614   | Business-User-Business (BUB)<br>Business-Service-Business (BSB)<br>Business-Rating Levels-Business (BLB) | 525,718<br>2,475,108<br>1,484,692 | 83.12<br>97.49<br>93.07           |  |  |
| MAG           | 113,919 | Paper-Paper (PP)<br>Paper-Author-Paper (PAP)                                                             | 1,806,596<br>10,067,799           | 64.59<br>93.48                    |  |  |

## **Motivation**

### Theoretical Definition

**Multiplex Graph Non-redundancy:** Task-relevant information exists not only in the shared information between graphs but also potentially within the unique information of certain graphs.

**Definition 1.**  $G_i$  is considered non-redundant with  $G_j$  for Y if and only if there exists  $\epsilon > 0$  such that the conditional mutual information  $I(G_i; Y | G_j) > \epsilon$  or  $I(G_j; Y | G_i) > \epsilon$ .

## Problem Definition

#### Graph Structure Learning (GSL) Perspective:

How can we learn a **fused graph** from the original multiplex graph in an unsupervised manner, mitigating task-irrelevant noise while retaining sufficient task-relevant information?

# Methodology

#### Information-aware Unsupervised Multiplex Graph Fusion



## **Theoretical Contributions**

#### Optimal Graph Augmentation

**Definition 2.**  $G'_i$  is an optimal augmented graph of  $G_i$  if and only if  $I(G'_i; G_i) = I(Y; G_i)$ , implying that the only information shared between  $G_i$  and  $G'_i$  is task-relevant without task-irrelevant noise. **Theorem 1.** If  $G'_i$  is the optimal augmented graph of  $G_i$ , then  $I(G^s_i; G'_i) = I(G^s_i; Y)$  holds. **Theorem 2.** The maximization of  $I(G^s_i; G'_i)$  yields a discernible reduction in the task-irrelevant information relative to the maximization of  $I(G^s_i; G_i)$ .

## Multiplex Graph Fusion

**Theorem 3.** The learned fused graph  $G^s$  contains more task-relevant information than the refined graph  $G_i^s$  from any single view. Formally, we have:

$$I(G^s; Y) \ge \max_i I(G^s_i; Y) \tag{7}$$

Theorem 3 theoretically proves that the fused graph  $G^s$  can incorporate more task-relevant information than considering each view individually, thus ensuring the effectiveness of multiplex graph fusion.

## **Experiments**

Table 1: Quantitative results (%) on node clustering. The top 3 highest results are highlighted with **red boldface**, red color and **boldface**, respectively. The symbol "OOM" means out of memory.

| Mathad     | ACM   |       |       |       | DBLP  |       |       |       | Yelp  |       |       |       | MAG   |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Method     | NMI   | ARI   | ACC   | F1    |
| VGAE       | 45.83 | 41.36 | 67.93 | 68.62 | 61.79 | 65.56 | 84.48 | 83.67 | 39.19 | 42.57 | 65.07 | 56.74 | OOM   |       |       |       |
| DGI        | 52.94 | 47.55 | 65.36 | 57.34 | 65.59 | 70.35 | 86.88 | 86.02 | 39.42 | 42.62 | 65.29 | 56.79 | 53.56 | 42.6  | 59.89 | 57.17 |
| O2MAC      | 42.36 | 46.04 | 77.92 | 78.01 | 58.64 | 60.01 | 83.29 | 82.88 | 39.02 | 42.53 | 65.07 | 56.74 | OOM   |       |       |       |
| MvAGC      | 64.49 | 66.81 | 87.17 | 87.21 | 50.39 | 51.21 | 78.39 | 77.84 | 24.39 | 29.25 | 63.14 | 56.7  | OOM   |       |       |       |
| MCGC       | 60.21 | 50.72 | 65.62 | 54.78 | 65.56 | 71.51 | 87.96 | 87.47 | 38.35 | 35.17 | 65.61 | 57.49 | OOM   |       |       |       |
| HDMI       | 65.44 | 68.87 | 88.11 | 88.14 | 64.85 | 70.85 | 87.39 | 86.75 | 60.81 | 59.35 | 79.56 | 77.6  | 48.15 | 34.92 | 51.78 | 49.8  |
| MGDCR      | 58.8  | 55.15 | 73.82 | 70.34 | 62.47 | 62.22 | 81.91 | 80.16 | 44.23 | 46.47 | 72.71 | 54.43 | 54.43 | 43.98 | 61.37 | 60.53 |
| DMG        | 64.14 | 67.21 | 87.11 | 87.23 | 69.03 | 73.07 | 88.45 | 87.88 | 65.66 | 66.33 | 88.26 | 89.27 | 48.72 | 39.77 | 61.61 | 60.16 |
| BTGF       | 68.92 | 73.14 | 90.09 | 90.11 | 66.28 | 72.47 | 88.05 | 87.28 | 69.97 | 73.53 | 91.39 | 92.32 | OOM   |       |       |       |
| InfoMGF-RA | 74.89 | 81.09 | 92.82 | 92.89 | 70.19 | 73.49 | 88.72 | 88.31 | 72.67 | 74.66 | 91.85 | 92.86 | 56.65 | 45.25 | 64.13 | 63.09 |
| InfoMGF-LA | 76.53 | 81.49 | 93.45 | 93.42 | 73.22 | 78.49 | 91.08 | 90.69 | 75.18 | 78.91 | 93.26 | 94.01 | OOM   |       |       |       |

Table 2: Quantitative results with standard deviation ( $\% \pm \sigma$ ) on node classification. Available data for GSL during training is shown in the first column, supervised methods depend on Y for GSL. The symbol "-" indicates that the method is structure-fixed, which does not learn a new structure.

| Available    | Methods    |            | M          | DE         | I D              | V                | aln              | MAG        |                  |  |
|--------------|------------|------------|------------|------------|------------------|------------------|------------------|------------|------------------|--|
| Data for GSL | Wiethous   | Macro-F1   | Micro-F1   | Macro-F1   | Micro-F1         | Macro-F1         | acro-F1 Micro-F1 |            | Micro-F1         |  |
| Duta for ODE | l          |            |            |            |                  |                  |                  | indere i i |                  |  |
| -            | GCN        | 90.27±0.59 | 90.18±0.61 | 90.01±0.32 | 90.99±0.28       | 78.01±1.89       | $81.03 \pm 1.81$ | 75.98±0.07 | $75.76 \pm 0.10$ |  |
| -            | GAT        | 91.52±0.62 | 91.46±0.62 | 90.22±0.37 | 91.13±0.40       | 82.12±1.47       | 84.43±1.56       | OOM        |                  |  |
| -            | HAN        | 91.67±0.39 | 91.47±0.22 | 90.53±0.24 | 91.47±0.22       | 88.49±1.73       | 88.78±1.40       | OOM        |                  |  |
| X,Y,A        | LDS        | 92.35±0.43 | 92.05±0.26 | 88.11±0.86 | 88.74±0.85       | 75.98±2.35       | 78.14±1.98       | OOM        |                  |  |
| X,Y,A        | GRCN       | 93.04±0.17 | 92.94±0.18 | 88.33±0.47 | 89.43±0.44       | 76.05±1.05       | 80.68±0.96       | OOM        |                  |  |
| X,Y,A        | IDGL       | 91.69±1.24 | 91.63±1.24 | 89.65±0.60 | 90.61±0.56       | 76.98±5.78       | 79.15±5.06       | OOM        |                  |  |
| X,Y,A        | ProGNN     | 90.57±1.03 | 90.50±1.29 | 83.13±1.56 | 84.83±1.36       | 51.76±1.46       | 58.39±1.25       | OOM        |                  |  |
| X,Y,A        | GEN        | 87.91±2.78 | 87.88±2.61 | 89.74±0.69 | 90.65±0.71       | 80.43±3.78       | 82.68±2.84       | OOM        |                  |  |
| X,Y,A        | NodeFormer | 91.33±0.77 | 90.60±0.95 | 79.54±0.78 | 80.56±0.62       | 91.69±0.65       | 90.59±1.21       | 77.21±0.18 | $77.08 \pm 0.19$ |  |
| X,A          | SUBLIME    | 92.42±0.16 | 92.13±0.37 | 90.98±0.37 | 91.82±0.27       | 79.68±0.79       | 82.99±0.82       | 75.96±0.05 | 75.71±0.03       |  |
| X,A          | STABLE     | 83.54±4.20 | 83.38±4.51 | 75.18±1.95 | 76.42±1.95       | $71.48 \pm 4.71$ | $76.62 \pm 2.75$ | OOM        |                  |  |
| X,A          | GSR        | 92.14±1.08 | 92.11±0.99 | 76.59±0.45 | $77.69 \pm 0.42$ | 83.85±0.76       | 85.73±0.54       | OOM        |                  |  |
|              | HDMI       | 91.01±0.32 | 90.86±0.31 | 89.91±0.49 | 90.89±0.51       | 80.73±0.64       | 84.05±0.91       | 72.22±0.14 | 71.84±0.15       |  |
|              | DMG        | 90.42±0.36 | 90.31±0.35 | 90.42±0.57 | 91.34±0.49       | 91.61±0.62       | 90.24±0.81       | 76.34±0.09 | 76.13±0.10       |  |
| -            | BTGF       | 91.75±0.11 | 91.62±0.11 | 90.71±0.24 | 91.57±0.21       | 92.81±1.12       | 91.37±1.28       | OOM        |                  |  |
| X,A          | InfoMGF-RA | 93.21±0.22 | 93.14±0.21 | 90.99±0.36 | 91.93±0.29       | 93.09±0.27       | 92.02±0.34       | 77.25±0.06 | 77.11±0.06       |  |
| X,A          | InfoMGF-LA | 93.42±0.21 | 93.35±0.21 | 91.28±0.31 | 92.12±0.28       | 93.26±0.26       | 92.24±0.34       | 00         | DM               |  |

## **Experiments**

#### Graph Visualization



Figure 3: Heatmaps of the subgraph adjacency matrices of the original and learned graphs on ACM.

#### **\*** Node Correlation Visualization



Figure 5: Node correlation maps of representations reordered by node labels.

# Summary of InfoMGF

### \* Key takeaways:

#### • GSL perspective:

Explore graph structure learning in heterogeneous multiplex graph through a data-centric paradigm.

#### Beyond redundancy:

Emphasize the importance of unique task-relevant information to better adapt to realworld non-redundant scenarios.



Our github repository contains the source code and datasets of InfoMGF.

#### **Contact me for discussions!**

E-mail: zhixiang.zxs@gmail.com