

Combining Statistical Depth and Fermat Distance for Uncertainty Quantification

Hai-Vy Nguyen^{1,2,3}, Fabrice Gamboa², Reda Chhaibi², Sixin Zhang³, Serge Gratton³, Thierry Giaccone¹

¹Ampere Software Technology

2 Institut de mathématiques de Toulouse

3 Institut de Recherche en Informatique de Toulouse

 \triangleright Measure "how central" a point is with respect to (w.r.t.) the training set taking into account density and geometry of the data in the feature space.

- \triangleright Measure "how central" a point is with respect to (w.r.t.) the training set taking into account density and geometry of the data in the feature space.
- ➢ Standard methods consist in assuming prior distribution such as Gaussian.

Figure 1. Motivation example.

- \triangleright Measure "how central" a point is with respect to (w.r.t.) the training set taking into account density and geometry of the data in the feature space.
- ➢ Standard methods consist in assuming prior distribution such as Gaussian.
- ➢ Our method has no distributional assumption, by combining Lens Depth with FD.

Figure 1. Motivation example.

- \triangleright Measure "how central" a point is with respect to (w.r.t.) the training set taking into account density and geometry of the data in the feature space.
- ➢ Standard methods consist in assuming prior distribution such as Gaussian.
- ➢ Our method has no distributional assumption, by combining Lens Depth with FD.
- \triangleright The larger the depth of an example, the more typical this point is (relative to the training set), the easier it is for the model to classify.
- \triangleright This gives us an out-of-domain uncertainty score.

(a) Gaussian fitting. (b) Our method.

Figure 1. Motivation example.

Lens Depth

- \triangleright LD measures the centrality of a point w.r.t. to a cluster.
- \triangleright The greater the depth, the more central the point is to the distribution.
- \triangleright Empirical LD is defined as

$$
\widehat{\mathrm{LD}}_n(x) \coloneqq {n \choose 2}^{-1} \sum_{1 \le i_1 < i_2 \le n} 1_{\mathsf{A}(X_{i_1}, X_{i_2})}(x) .
$$

(a) Gaussian (b) Moon Figure 3. Lens Depth using Euclidean distance.

- \triangleright A(X₁, X₂) = {x: max $i = 1,2$ $D(x, X_i) \leq D(X_1, X_2)$ \Rightarrow The choice of the distance D is important !
- \triangleright A naive choice is the Euclidean one \Rightarrow Unsatisfying results (Fig. 3).
- \triangleright Need some distance that can adapt to the distribution.

Sample Fermat Distance (SFD)

- ➢ Need some distance that can adapt to the distribution ⇒ Fermat Distance
- > Q: a non-empty, locally finite, subset of ℝ^d. |x| denotes Euclidean norm of x, $q_Q(x) \in Q$ is the particle closest to x in Euclidean distance. For $\alpha \geq 1,$ and $x, \, y \in \mathbb{R}^d,$ SFD is defined as

$$
D_{Q,\alpha}(x,y) := \min \left\{ \sum_{j=1}^{k-1} |q_{j+1} - q_j|^{\alpha} : (q_1, \dots, q_k) \in Q^k \text{ with } q_1 = q_Q(x), q_k = q_Q(y), k \ge 1 \right\}. \tag{3}
$$

(a) $\alpha = 1$ (b) $\alpha = 1.2$ (c) $\alpha = 3$ (d) $\alpha = 7$

Figure 4. Sample Fermat path

Artifact from Sample Fermat Distance (SFD)

- \triangleright \widehat{LD} using SFD.
- \triangleright The shape of datasets is much better captured.
- ➢ However, some zones have constant LD value (represented by the same color).
- \triangleright We can show that \widehat{LD}_n is constant over the Voronoï cells associated to Q.

Figure 5. Lens Depth using SFD.

Modified Sample Fermat Distance

To avoid this undesirable artifact, we proposed modified SFD defined as

$$
D_{Q,\alpha}^{modif}(x,y) := \min_{q \in Q} \{|x - q|^{\alpha} + D_{Q,\alpha}(q,y)\}.
$$

(a) Before (b) Before (c) After (d) After SFD Modified SFD

Figure 6. Lens Depth using SFD and Modified SFD.

Two-moon Dataset

Different methods for uncertainty estimation are applied on a same neural net trained to classify 2 classes in moon-shape. Uncertainty estimations are computed based solely on the feature space of the model.

Figure 7. Different methods for uncertainty estimation. Red represents high uncertainty.

Experiments with different neural nets and data sets

Table 1. Results on CIFAR10 with Tiny-ImageNet, CIFAR100 and SVHN as OOD sets. SN: SpectralNormalisation, JP: Jacobian Penalty.

Table 2. AUROC score with CIFAR100 as ID data and Tiny-Imaget as OOD data.

AMPERE

Thank you !!!