

Reasons and Solutions for the Decline in Model Performance after Editing

Xiusheng Huang^{1,2,3}, Jiaxiang Liu^{1,2}, Yequan Wang³, Kang Liu^{1,2} ¹The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,

Institute of Automation, Chinese Academy of Sciences

²School of Artificial Intelligence, University of Chinese Academy of Sciences

³Beijing Academy of Artificial Intelligence, Beijing, China

Introduction

- Knowledge editing, while effective, may cause damage to the model:
 - > This study examines two factors causing this decline:
 - ~ Data perspective and Model perspective

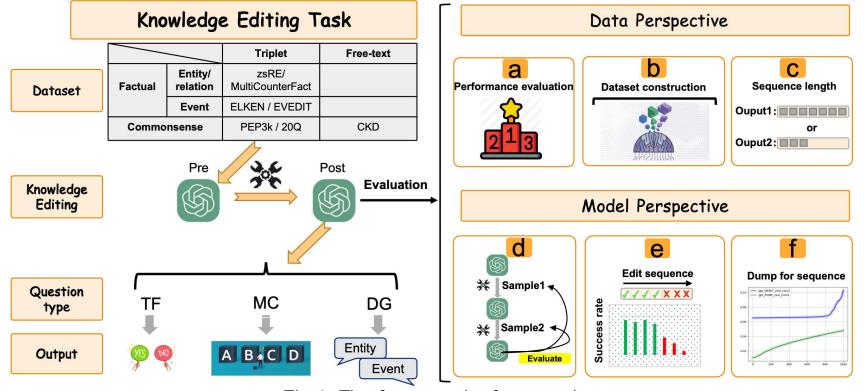
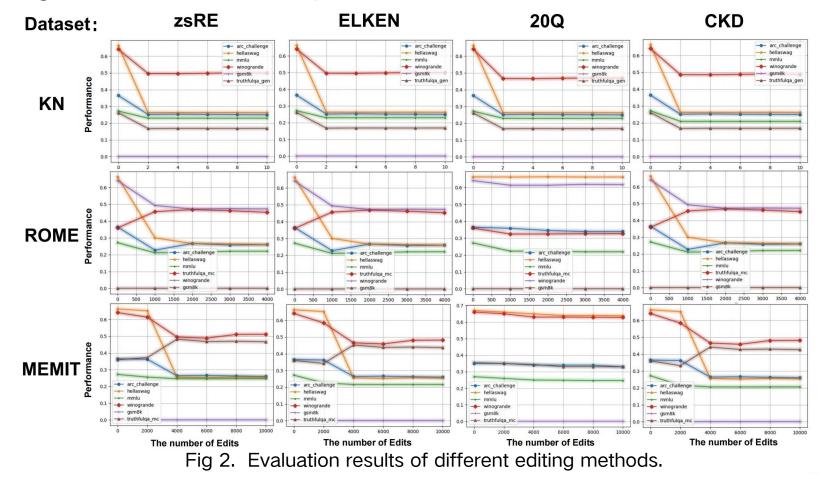


Fig 1. The framework of our work.

We conduct performance evaluation on multiple datasets:

> Existing methods affect the performance of downstream tasks.



- To elucidate the impact of different editing objectives:
 - > We conduct: MQD construction -> impact assessment
 - ~ We created a Multi-Question Dataset (MQD) from ATOMIC
 - ~ Perplexity (PPL) values for the editing objectives: 297.4, 43.3, 12.3
 - ~ Average length for the three question types: 23.44, 35.03, 13.38

ATOMIC Data Source: < PersonX accepts PersonY appointment, as a result, PersonY shakes PersonX hand >										
Category	Component Prompt	Target Answer								
DG	PersonX accepts PersonY appointment, resulting in PersonY	shakes PersonX hand								
	PersonX accepts PersonY appointment, resulting in PersonY?									
MQ	Below are four options: (a) to give him a treat; (b) to forgive him;	d								
	(c) to live happily ever after; (d) shakes PersonX hand. The correct option is									
T/F	PersonX accepts PersonY appointment, resulting in PersonY	NAC								
	shakes PersonX hand . Is this sentence logical? Please answer yes or no. A:	yes								

Table 1. An example of converting source data.

To elucidate the impact of different editing objectives:

> We conduct: MQD construction -> impact assessment

 \sim The decline in model performance after editing is attributed to the diversity of editing objectives and the length of tokens

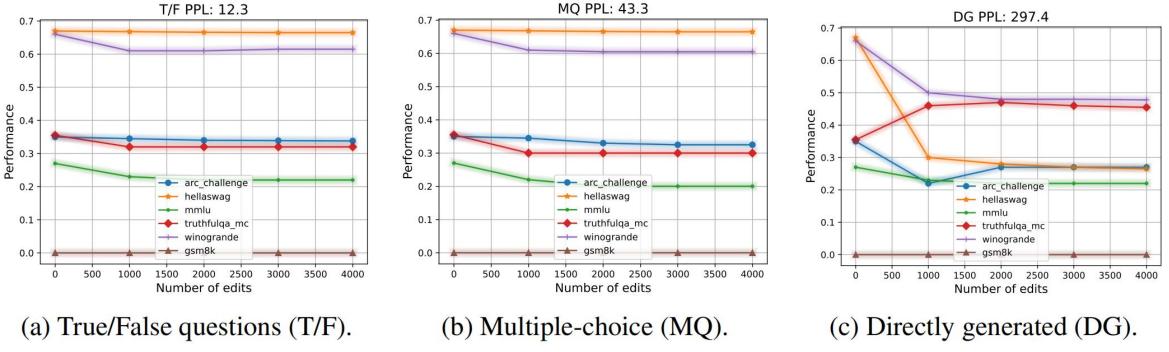


Fig 3. The performance of the model after editing.

• To investigate the model factors contributing to degradation:

> We propose a new evaluation methods.

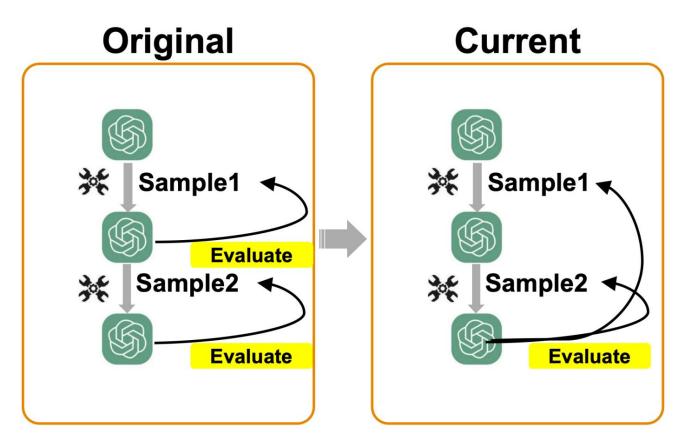


Fig 4. The original and current evaluation methods.

Model perspective

• To investigate the model factors contributing to degradation:

> We evaluate the model's forgetfulness towards edited facts.

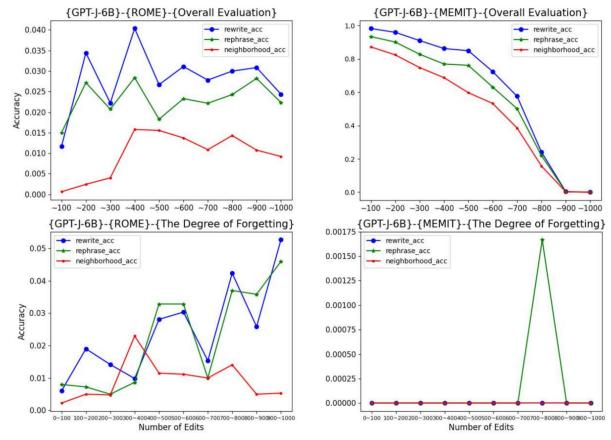


Fig 5. Assessment of forgetting ability of models.

• To investigate the model factors contributing to degradation:

> Then, we examine the bottleneck of sequence edit.

 $\sim\,$ The decline in model performance after editing is due to the explosive growth of norms in the editing layers during the editing process

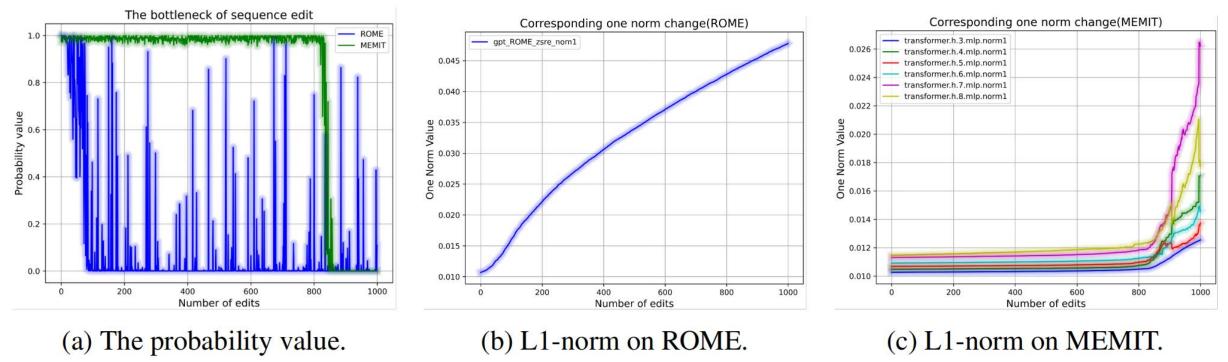


Fig 6. The bottleneck and L1-norm correspondence in sequence editing.

D4S method

In order to mitigate the increase of the norm, we propose D4S:

> First, let's review the MEMIT process:

~ For the l^{th} FFN layer that needs to be modified:

$$k_{i}^{l} = \frac{1}{N} \sum_{k=1}^{N} \sigma(W_{in}^{l} \gamma(h_{i}^{l-1}[pre_{k} \oplus p(s_{i})])), r_{i}^{l} = \frac{z_{i} - h_{i}^{L}}{L - l + 1}$$
$$\Delta^{l} = (R^{l} K^{l^{T}})(Cov^{l} + K^{l} K^{l^{T}})^{-1}, W_{out}^{l} \leftarrow W_{out}^{l} + \Delta^{l}$$
$$R^{l} = [r_{1}^{l}, \cdots, r_{n}^{l}], K^{l} = [k_{1}^{l}, \cdots, k_{n}^{l}], Cov^{l} = K_{0}^{l} K_{0}^{l^{T}}$$

~ where k_i^l and r_i^l are the input and target output respectively. And K_0^l are the inputs of irrelevant knowledge

D4S method

- In order to mitigate the increase of the norm, we propose D4S:
 > For our Dump for Sequence (D4S) method:
 - ~ We can split the Δ^{l} into two linear segments:

$$R^{l}K^{l^{T}} = [r_{1}^{l}, \cdots, r_{n}^{l}][k_{1}^{l}, \cdots, k_{n}^{l}]^{T} = \sum_{i=1}^{n} r_{i}^{l}k_{i}^{l^{T}}$$

$$K^{l}K^{l}^{T} = [k_{1}^{l}, \cdots, k_{n}^{l}][k_{1}^{l}, \cdots, k_{n}^{l}]^{T} = \sum_{i=1}^{n} k_{i}^{l}k_{i}^{l}^{T}$$

~ For new knowledge to be edited:

$$R^{l}K^{l^{T'}} = R^{l}K^{l^{T}} + r^{l}_{n+1}k^{l}_{n+1}$$

$$K^{l}K^{l^{T'}} = K^{l}K^{l^{T}} + k^{l}_{n+1}k^{l}_{n+1}^{T}$$

- The experimental results demonstrates the effectiveness of D4S:
 - > The experiments are designed to answer two research questions:
 - ~ How does D4S perform in sequence editing compared to other methods?
 - ~ How much damage does D4S do to the model?

Model	Method	Edits = 100			Edits = 500			Edits = 1000					
		Eff.	Par.	Spe.	Avg.	Eff.	Par.	Spe.	Avg.	Eff.	Par.	Spe.	Avg.
Llama	FT	30.47	25.78	12.19	22.81	19.43	18.06	6.56	14.68	16.13	13.89	5.96	12.00
	ROME	97.68	92.39	90.22	93.43	48.68	47.72	32.56	42.99	21.84	20.74	4.01	15.53
	MEMIT	92.99	83.22	94.02	90.08	2.90	2.90	2.51	2.77	2.85	2.85	2.74	2.82
	PMET	0.24	0.35	0.46	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	GRACE	99.33	0.53	99.88	66.58	98.87	0.59	99.72	66.39	98.94	0.35	99.77	66.35
	D4S(ours)	95.53	86.45	93.44	91.81	<u>91.19</u>	81.48	83.34	85.34	87.36	79.30	78.99	81.88
GPT	FT	15.28	7.40	0.42	7.70	12.95	7.84	0.23	7.01	7.03	4.15	0.11	3.77
	ROME	1.17	1.50	0.06	0.91	2.67	1.83	1.55	2.02	2.44	2.23	0.92	1.86
	MEMIT	98.25	93.41	87.24	92.97	84.94	76.15	59.72	73.60	0.00	0.02	0.00	0.01
	PMET	0.33	0.33	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	GRACE	100.00	0.40	100.00	66.8	100.00	0.15	100.00	66.72	100.00	0.07	100.00	66.69
	D4S(ours)	97.72	97.01	85.30	93.34	97.42	93.12	74.65	88.40	<u>95.98</u>	91.17	70.17	88.77

Table 2. Sequencial edits on GPT and Llama with ZsRE dataset.

- The experimental results demonstrates the effectiveness of D4S:
 - > The experiments are designed to answer two research questions:
 - ~ How does D4S perform in sequence editing compared to other methods?
 - ~ How much damage does D4S do to the model?

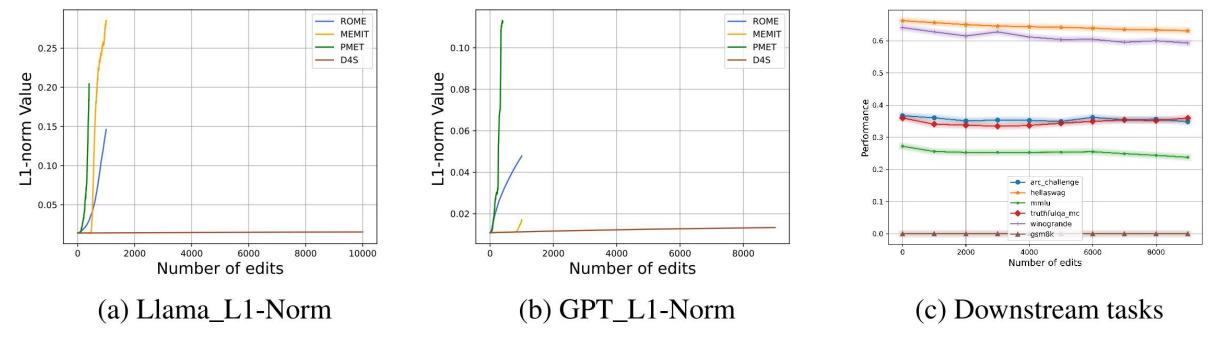


Fig 7. Norms of weight and performance of the edited model.

Thanks !