Unified Lexical Representation for Interpretable Visual-Language Alignment

Yifan Li, Yikai Wang, Yanwei Fu, Dongyu Ru, Zheng Zhang, Tong He Fudan University Amazon Web Services

Background

Visual-Language Alignment (VLA)

- Latent representation
- Lexical representation

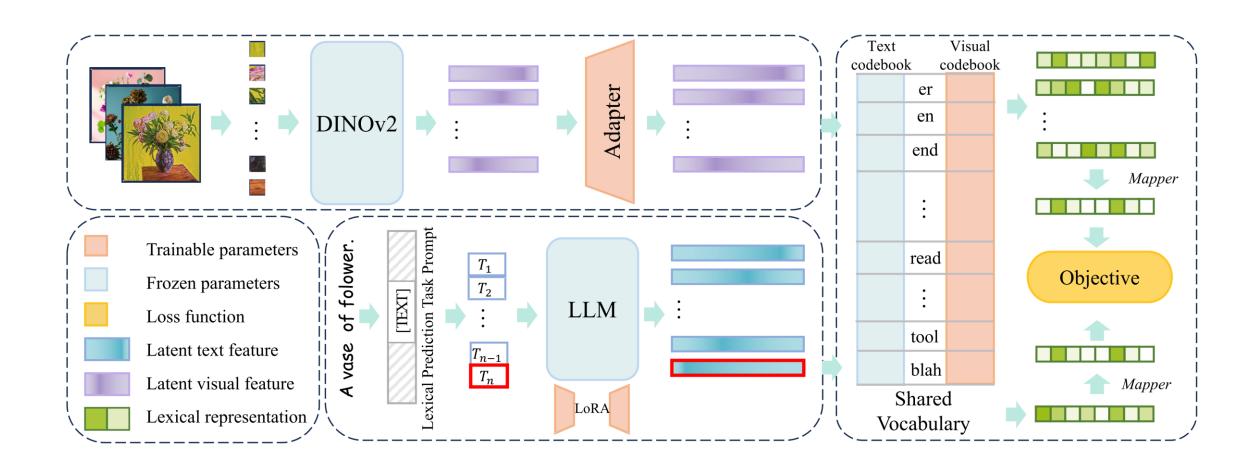
Lexical representation

Challenges of learning lexical representation:

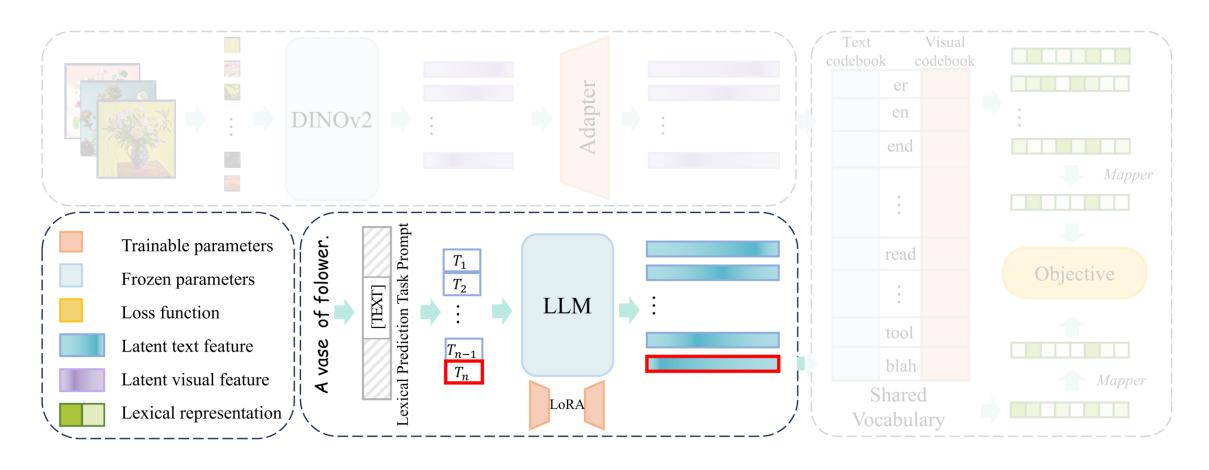
An non-negative vector in which each dimension explicitly represents the similarity between an image or text and a specific word.

Background

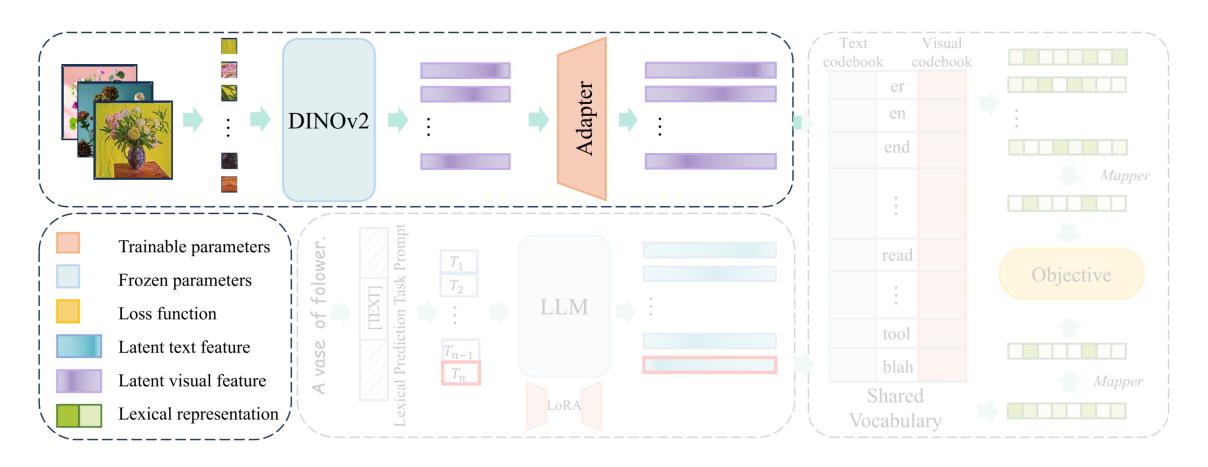
Visual-Language Alignment (VLA)

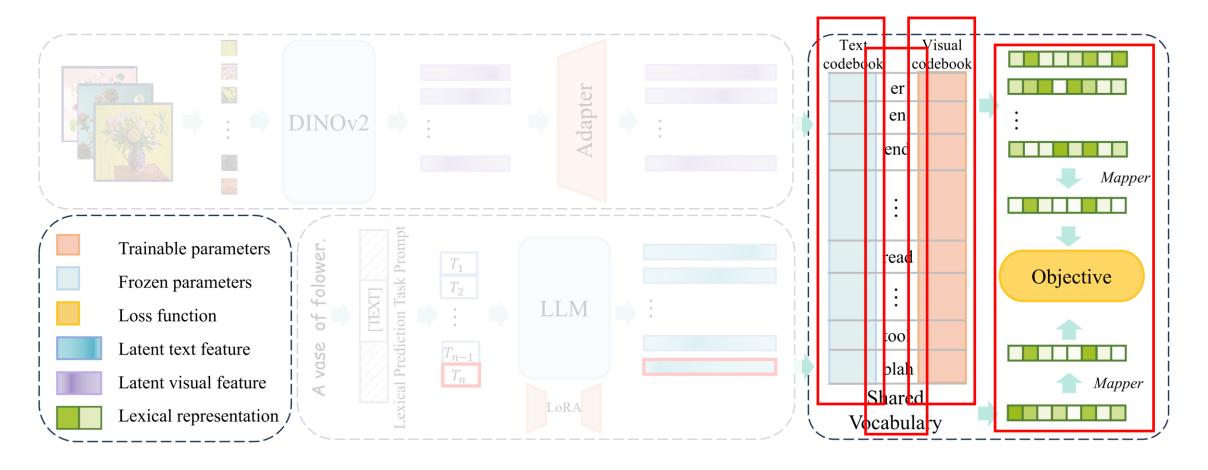

- Latent representation
- Lexical representation

Lexical representation


Challenges of learning lexical representation:

- 1. Lack of precise supervision signals
- 2. False discovery





The focus of "The man is riding a white horse." lies on important words: "man", "riding", "white", "horse". The focus of '[TEXT]" lies on important words:

$$\ell_{\text{overuse}} = V \sum_{j=1}^{V} \frac{\bar{s}_{\cdot,j}}{\sum_{k=1}^{V} \bar{s}_{\cdot,k}} \bar{s}_{\cdot,j}^2 = NV \sum_{j=1}^{V} \left(\sum_{i=1}^{N} s_{i,j}/N\right)^3 / \sum_{j=1}^{V} \sum_{i=1}^{N} s_{i,j}.$$

PatchDis

horse

Ground truth regions

m Io U

Key Experimental Results

Table 1: Zero-shot cross-modal retrieval. \mathbf{Q} indicates variants of our LexVLA. CLIP¹ is the original CLIP [34]; results denoted by $(\cdot)^2$ are reported in VDR [48]; results denoted by $(\cdot)^3$ are reported in STAIR [5]. "Data" is the multi-modal alignment training data size; "Latent" means direct latent feature alignment methods; "Lexical" indicates lexical feature alignment methods. R@K, the recall ratio within top-K items.

	Model	Data	MSCOCO						Flickr30k					
Setting			image-to-text			text-to-image			image-to-text			text-to-image		
			R@1	R@5	R@10									
Latent	$CLIP^2$	15M	20.8	43.9	55.7	13.0	31.7	42.7	34.9	63.9	75.9	23.4	47.2	58.9
	$FILIP^2$	15M	21.6	46.7	59.0	13.7	31.7	41.6	46.3	74.4	83.2	30.7	58.2	68.6
	CLIP-BERT ²	15M	23.9	47.8	60.3	13.6	33.8	45.1	44.1	71.2	80.7	27.8	54.7	65.9
	$DeCLIP^2$	15M	25.3	51.2	63.4	16.6	35.2	45.4	51.3	80.7	88.5	35.5	63.0	73.0
	$SLIP^2$	15M	27.7	52.6	63.9	18.2	39.2	51.0	47.8	76.5	85.9	32.3	58.7	68.8
	ProtoCLIP ²	15M	30.2	55.1	66.5	16.9	37.9	49.4	-	-	-	-	-	-
	$CLIP^1$	0.4B	52.4	76.7	84.6	33.1	58.4	69.0	81.8	96.2	98.8	62.1	85.6	91.8
	$CLIP^3$	1.1B	53.4	78.3	85.6	36.2	62.2	72.2	79.6	95.5	98.1	63.0	86.7	92.5
Lexical	VDR ²	15M	30.9	54.5	65.4	17.4	38.1	49.7	51.0	79.3	86.7	32.4	60.1	70.7
	STAIR ³	1.1B	57.7	80.5	87.3	41.4	65.4	75.0	81.2	96.1	98.4	66.6	88.7	93.5
Lexical	Q(BoW)	12M	17.9	34.9	45.2	10.4	24.3	33.1	30.6	56.2	66.3	17.7	36.4	44.9
	Q(CLIP)	12M	51.8	75.5	84.1	36.8	62.5	72.7	82.9	96.2	98.7	65.2	88.3	93.2
	Q (FLOPs)	12M	56.2	80.0	87.4	39.0	65.7	75.6	84.2	96.6	98.7	67.4	89.4	94.1
	Q (512)	12M	56.4	79.9	87.5	38.1	64.6	74.9	84.5	97.3	99.0	65.7	89.3	93.8
	LexVLA	12M	55.4	80.6	88.3	39.8	66.3	76.2	83.9	97.5	99.1	67.8	90.2	94.2

Key Experimental Results

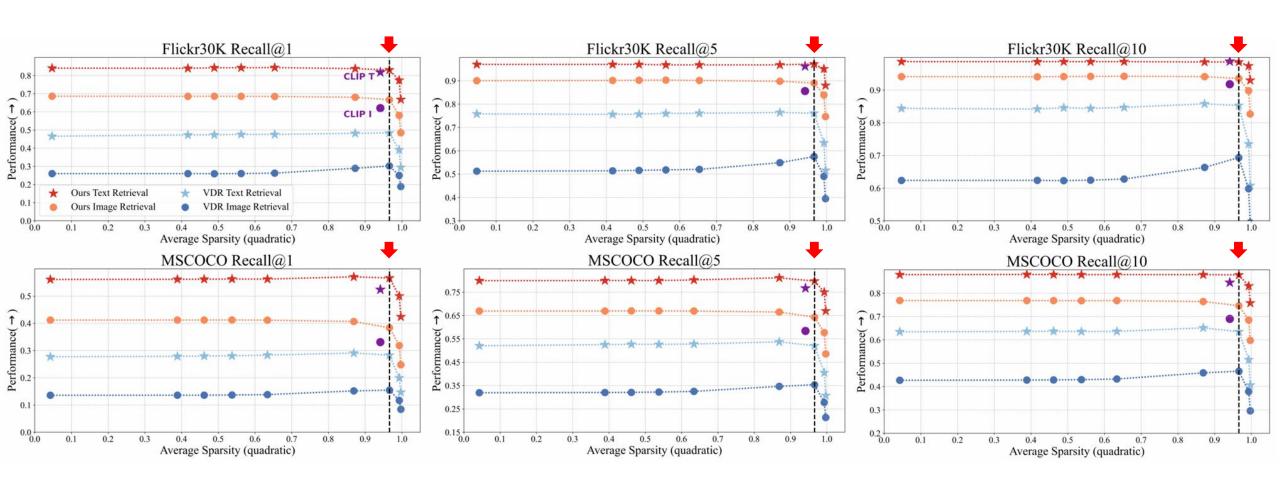
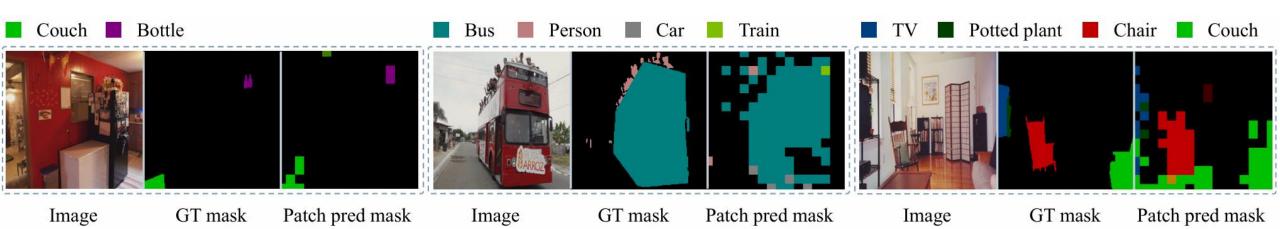


Table 2: PatchDis results.

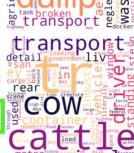
Model	mIoU
Random Dis.	5.0
CLIP	5.3
VDR	12.6
Q(CLIP)	13.9
LexVLA	36.3

Key Experimental Results


Interpretability

Interpretability

Interpretability


Overuse

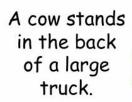
FLOPs Overuse

FLOPs

Overuse

A picture of a young boy standing on a snowboard.

FLOPs



Conclusion

Thank you for your attention!

