

RCDN: Towards Robust Camera-Insensitivity Collaborative Perception via Dynamic Feature-based 3D Neural Modeling

Tianhang Wang, Fan Lu, Zehan Zheng, Guang Chen, Changjun Jiang Robotics & Embodied AI Lab, Tongji University

Lab Page: https://www.embodiment.ai

Existing Problem

- Harsh realities of real-world sensors in collaboration
 - Blurred
 - High noise
 - Interruption and even failure

The number of cameras used in the collaborative process

Typical Camera Fault Analysis in Realistic Scenarios

wn) g) Dirty Internal-External

h) Ice

k) No Demosaicing

l) No Noise Reduction

Summary of Camera Malfunctions

Existing Technology Routine

- For Single perception: introducing LiDAR
 - Spatial misalignment effect
- For collaborative perception
 - One possible solution: introducing LiDAR too.
 - Why not utilize the unique attributes of multi-view.

Spatial misalignment effect

LiDAR camera mechanism based on confidence complementarity

The complementary characteristics of multiple perspectives in the collaborative process

Proposed: RCDN

Input:

- Raw camera data sequence $C = \{C_0, C_1, ..., C_M\}$ including unpredictable noise signal.
- Sensor poses $P = \{P_0, P_1, ..., P_M\}(P_0 \in SE(3))$
- Timestamps $T = \{t_0, t_1, \dots, t_{n-1}\} (t_i \in \mathbb{R})$

Output:

• Repaired camera data sequence $\hat{C} = \{\hat{C}_0, \hat{C}_1, \dots, \hat{C}_M\}$

RCDN

- Expand the 2D bird's-eye view features, establish spatial sampling based on 3D geometric bird's-eye view features, and optimize scene representation
- Propose a dynamic static decoupling neural field and design a hash grid rendering module based on generalizable features to improve reconstruction quality
- Annotate the robust dataset of collaborative cameras, manually label and design different camera fault scenarios, and assist in the research of collaborative camera robustness

RCDN

Collaborative Static Neural Field

- Geometry BEV Features & Hash Grids
- Static & Dynamic Decomposition
- Objected-based Modeling

Object-based hash grid

RCDN

Collaborative Dynamic Neural Field

- Flow MLP
- Object-based Movement Consistency
- 4D (+ Temporal Interpolation) Hash Grid

Object Movement

Effeteness of 4D Hash Grid

OPV2V-N for RCDN

Data Recording logic

Data Modal

OPV2V-N for RCDN

> Qualitative Evaluation

> Quantitative Evaluation

OPV2V-N	w random noisy	wo random noisy	
01 12 11	w. fundom noisy	w.o. random noisy	
Dr. Area	49.37	52.64	
Lanes	34.80	37.96	
Dynamic Veh.	39.81	47.49	

Validation on whether random noise will affect collaborative perception system

Distributions of V2X collaborative agents

 The proposed RCDN can stabilize the performance of all benchmark methods in both static and dynamic parts of map view segmentation under all camera fault settings.

> Ablation

Modules		Dr Area	Lanes	Dynamic Veh
Neural Field	Time Model	DI. Alea	Lanes	Dynamic ven.
×	×	24.55	10.07	30.67
~	×	24.47	11.71	41.55
~	~	27.37	10.63	46.65

✓ The effectiveness of dynamic and static decoupling

(a) Implicit MLP-based dynamic Modeling (b) Explicit Grid-based RCDN Modeling

About ~ 6 hours training (PSNR=21.83) About ~ 15 mins training (PSNR=23.86)

✓ Hash grid rendering module with generalizable features

□ Visualization of baselines: F-Cooper w/w.o RCDN

□ Visualization of baselines: V2VNet w/w.o RCDN

Thank you for listening!