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Figure 1: Given a sequence of snapshots (µ0, . . . , µT ) of a population of particles undergoing
diffusion, we want to find the parameters ε of the parametrized energy function Jω that best explains
the particles evolution. Given ε, the effects mismatch is the Wasserstein distance between the
observed trajectory and the predicted trajectory obtained iteratively solving the JKO step with Jω.
The first-order optimality condition in [30] applied to the JKO step suggests that the “gradient” of
Jω with respect to each µ̂t vanishes at optimality, i.e., for µ̂t = µt. For Jω(µ) =

∫
Rd Vω(x)dµ(x),

this condition is depicted on the right. The gradient (dashed blue arrows) of the true V (level curves
in dashed blue) at each observed particle xt+1

i (blue circles) in the next snapshot µt+1 opposes
the displacement (dotted red arrows) from a particle xt

i (red triangles) in the previous snapshot µt.
Instead, the gradient (solid green arrows) of the estimated Vω (level curves in solid green) at each
observed particle xt+1

i (square) does not oppose the displacement from a particle xt
i in the previous

snapshot µt. This mismatch in the causes of the diffusion process is what JKOnet↑ minimizes.

Furthermore, to be practical, it is limited to learning only potential energies, modelling the underlying
physics only partially. Alternatively, [10, 43] learn directly the transport map describing the evolution
of the population (i.e., the effects), bypassing the representation of the underlying energy functional
(i.e., the causes). Motivated by robustness, interpretability, and generalization, here we seek a method
to learn the causes. In [23, 42], the authors try to learn a geometry that explains the observed transport
maps. Unfortunately, the cost between two configurations along a cost-minimizing trajectory is often
not a metric [47]. Other attempts include recurrent neural networks [21], neural ODEs [15], and
Schrödinger bridges [12, 28].

Contributions. We study the first-order necessary optimality conditions for the JKO scheme,
an optimization problem in the probability space, and show that these conditions can be exploited
to learn the energy functional governing the underlying diffusion process from population data,
effectively bypassing the complexity of the infinite-dimensional bilevel optimization problem.
We provide a closed-form solution in the case of linearly parametrized energy functionals and a
simple, interpretable, and efficient algorithm for non-linear parametrizations. Via exhaustive nu-
merical experiments, we show that, in the case of potential energies only, JKOnet↑ outperforms
the state-of-the-art in terms of solution quality, scalability, and computational efficiency and, in
the until now unsolved case of general energy functionals, allows us to also learn interaction
and internal energies that explain the observed population trajectories. When applied to predict
the evolution of cellular processes, it achieves state-of-the-art accuracy at a fraction of the
computational cost. Figure 1 shows an overview of our method, detailed in Section 3.

2 Diffusion processes via optimal transport

2.1 Preliminaries

The gradient of ϑ : Rd ↑ R is →ϑ ↓ Rd and the Jacobian of ϖ : Rd ↑ Rn is →ϖ ↓ Rn↓d. We
say that f : Rd ↑ R has bounded Hessian if

∥∥→2f(x)
∥∥ ↔ C for some C > 0 (and some matrix

2

Motivation
• Diffusion processes are widespread in many natural processes.
• Typically characterized by three terms: a drift term due to a potential
field, the interaction with other particles, and a stochastic term.
• Existing methods either rely on having access to particles trajectories
(often not possible) or are data and compute inefficient.

The JKO scheme
The Fokker-Planck equation,

∂ρ(t, x)

∂t
= ∇ · (∇V (x)ρ(t, x)) + β∇2ρ(t, x),

describes the time evolution of the distribution ρ of a set of particles
undergoing drift and diffusion,

dX (t) = −∇V (X (t))dt +
√

2βdW (t),

where X (t) is the state of the particle, V (x) the driving potential, and
W (t) the Wiener process. It turns out the resulting particles trajectory
can be described via the JKO scheme:

µt+1 = argmin
µ∈P(Rd)

J(µ) +
1

2τ
W2(µ, µt)

2, (1)

where J is an energy functional and τ > 0 is the time discretization.
A general energy functional:

J(µ) =

∫

Rd

V (x)dµ(x)

︸ ︷︷ ︸
potential

+

∫

Rd×Rd

U(x − y)d(µ× µ)(x , y)

︸ ︷︷ ︸
interaction

+ β

∫

Rd

ρ(x) log(ρ(x))dx

︸ ︷︷ ︸
internal

.

Intuition in Rd

Consider the analog of (1) in the Rd ,

xt+1 = argmin
x∈Rd

J(x) +
1

2τ
∥x − xt∥2.

We replace the above by its first-order optimality condition

∇J(xt+1) +
1

τ
(xt+1 − xt) = 0.

Given a dataset (x0, x1, . . . , xT), we find J as:
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Our work enables an analogous result in the Wasserstein space.

First-order optimality conditions for the JKO
scheme
Our analysis suggest that given a populations dataset (µ0, µ1, . . . , µT)
we seek the parameters θ minimizing
T−1∑

t=0

∫

Rd×Rd

∥∥∥∥∥∇Vθ(xt+1) +

∫
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′
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+
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dγt(xt, xt+1), (2)

where γ0, γ1, . . . , γT are optimal transport plans between µt and µt+1.
• γt can be computed once, before-hand, and efficiently;
• when Jθ is a neural network, we minimize (2) via gradient descent;
• when Jθ is parametrized linearly, we have a closed-form solution.

Training at lightspeed
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Scaling to high-dimensions

• Sub-linear error growth.
• Negligible increase in training time.
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Learning general energy terms

Additional error sources:
• Sampling error (internal energy)
• Estimation of the densities
Nonetheless: our method (JKOnet∗,
non-linear and linearly parametrized)
recovers all the energy terms.
Open question: observability of the
different energy terms?
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Learning single-cell diffusion dynamics

• Intuition: cellular evolution minimizes (some) energy;
• We can account for unobserved variables via time-varying energies;
• State-of-the-art accuracy at a fraction
of the computational cost of the other methods: less than minute vs hours.

Cool stuff worth looking at next

• Fast distillation of diffusion models for one- or
few-steps generation;
• Observability of the different energy terms;
• Can optimality conditions in P(Rd) be helpful
in your work? Reach out!
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