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Data Privacy is Important in Neural Network Training
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Deep neural networks are widely applied across domains such as healthcare, finance, and law enforcement.
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Private Training is Secure but Slow
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FHE-based private training offers strong data privacy guarantees 
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Our Motivation
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Ø Redundant
Ø Easy to learn
Ø …

Can we reduce the number of ciphertexts, i.e., encrypted data samples, during private training 
without compromising accuracy?

Less informative samples More informative samples

Training on a subset of samples barely 
compromise the accuracy in the  plaintext 

Ø Diverged 
Ø Challenging
Ø …
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Problem Statement
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Ø Security. The server should not learn the training data or model weights during pruning.

Ø Accuracy. The chosen subset should have a close accuracy compared to full dataset.

Ø Efficiency. Encrypted data pruning should speedup private training.

The server choose the most salient subset of samples 𝐷′  from the encrypted dataset $𝐷.
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Naïve Encrypted Data Pruning
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Directly applying data pruning methods in the plaintext to private training is impractical.   
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HEPrune Framework
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HEPrune enables encrypted data pruning with HE-friendly score, client-aided masking and ciphertext-wise pruning.
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HE-friendly Importance Score

HEPrune: Fast Private Training of Deep Neural Networks With Encrypted Data Pruning 7

The HE-friendly importance score (HEFS)  is easy to compute in the encrypted state. 

Subtraction
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𝑠𝑐𝑜𝑟𝑒 =  HE.Max 𝑌 ⊟ 𝑃 , 𝑃 ⊟ 𝑌
              = 𝑌 ⊟ 𝑃 HE.Sign 𝑌 ⊟ 𝑃

HE.Max 𝑢, 𝑣 = $%& %($(&)HE.Sign($(&)
*

HE.Sign 𝑥 = 𝑔(𝑓(𝑥))

𝑓	(𝑥) 	= 	8.83133072𝑥	 − 	46.45750399𝑥! 	+ 	83.02822347𝑥" 	− 	44.99284778𝑥#

𝑔 𝑥 = 3.94881885𝑥	 − 	12.91030110𝑥! 	+ 	28.08653622𝑥" 	− 	35.59691490𝑥# 	+ 	26.51593709𝑥$ 	− 	11.41848894𝑥%% 	+ 	2.62558444𝑥%! 	− 	0.24917230𝑥%"

Streamlined circuit Lightweight computation Low approximation error

Computing HEFS for one ciphertext takes less than 2 seconds.



Client-aided Masking
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Client

Server Security.
The training data and model weights remain encrypted.
The privacy of data and model is protected.

Client-aided masking avoids expensive homomorphic sorting without leaking data privacy. 

Efficiency.
Ø Runtime 
Generating the pruning mask needs only 𝑂(𝑁) time on 
the client side (15	𝑚𝑠 for the CIFAR-10 dataset).

Ø Communication
Before sending the scores, the server can set the score 
to a low multiplicative level to improve communication.Size of a CKKS ciphertext at different level 𝐿



Ciphertext-wise Pruning
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Ciphertext-wise pruning (CWP) effectively removes the sparse ciphertexts and reduces the number 
of ciphertexts in private training.



Encrypted Data Pruning on Different Datasets
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We set the pruning ratio as 𝑝 = 0.9 (only 10% of the dataset is kept) on different datasets.
Encrypted data pruning speedup the training time by around 6.6 times.

The proposed methods effectively improves the performance over the baselines.



Different Pruning Ratios and Training from Scratch
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We experiment with different pruning ratio on the CIFAR-10 and MNIST  dataset. Training with 40%~70% 
of the dataset has even high accuracy than training with the full dataset.

The encrypted data pruning can also be applied to the training-from-scratch setting. 
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