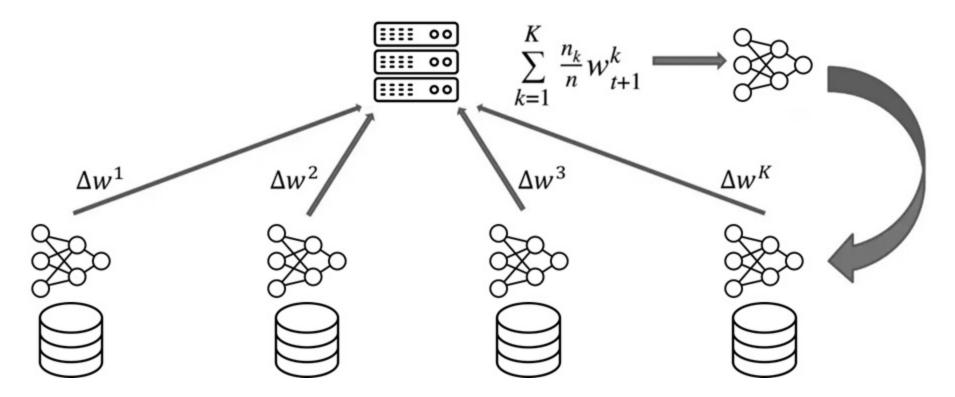
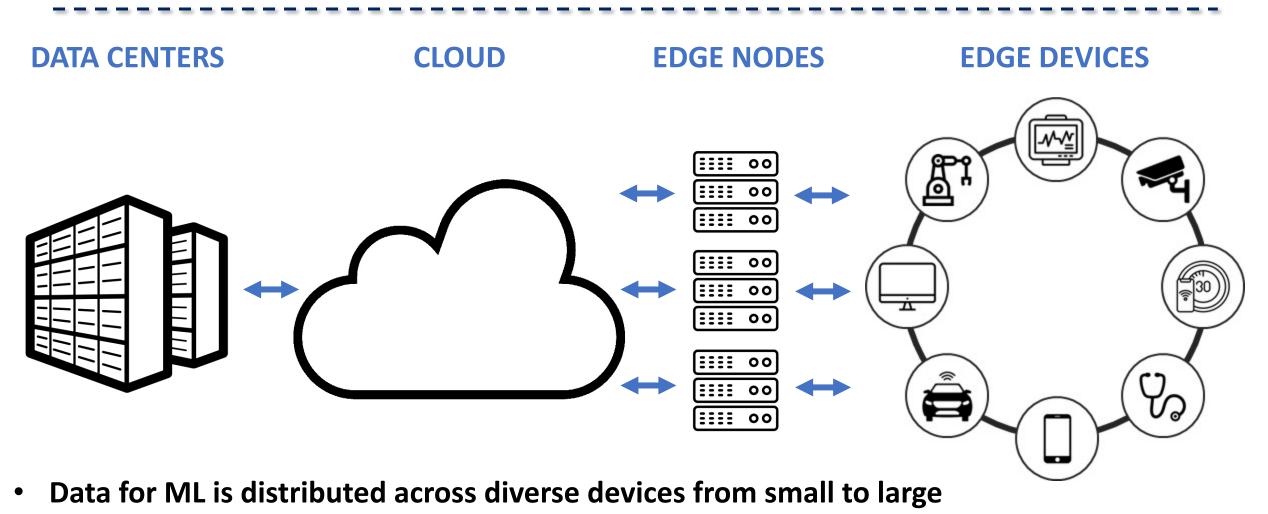
Towards Diverse Device Heterogeneous Federated Learning via Task Arithmetic Knowledge Integration

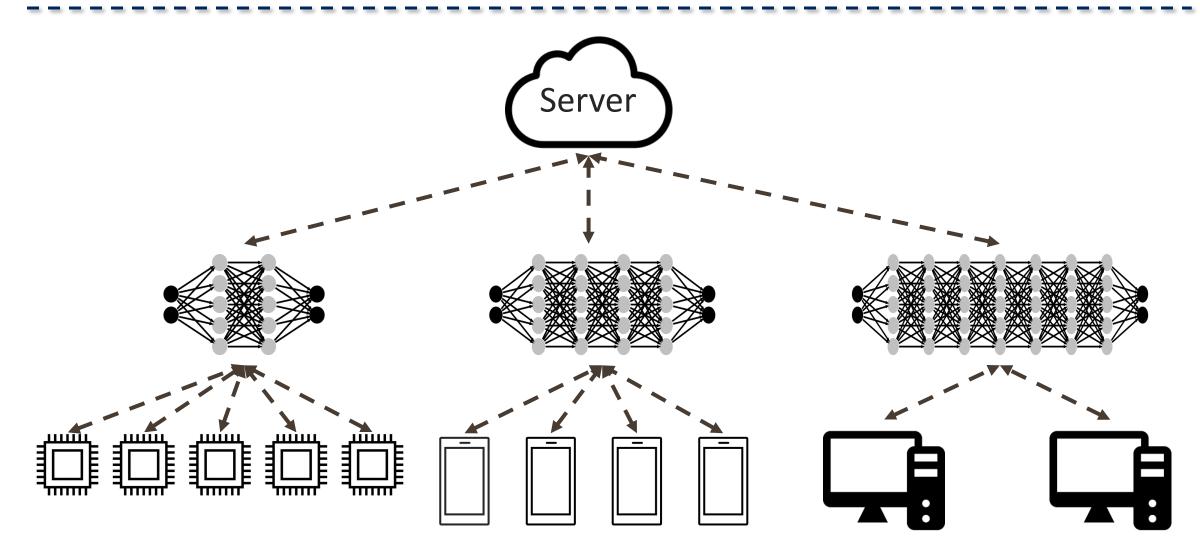
Mahdi Morafah¹, Vyacheslav Kungurtsev², Hojin Chang¹, Chen Chen³, Bill Lin¹


¹University of California, San Diego ²Czech Technical University in Prague ³University of Central Florida

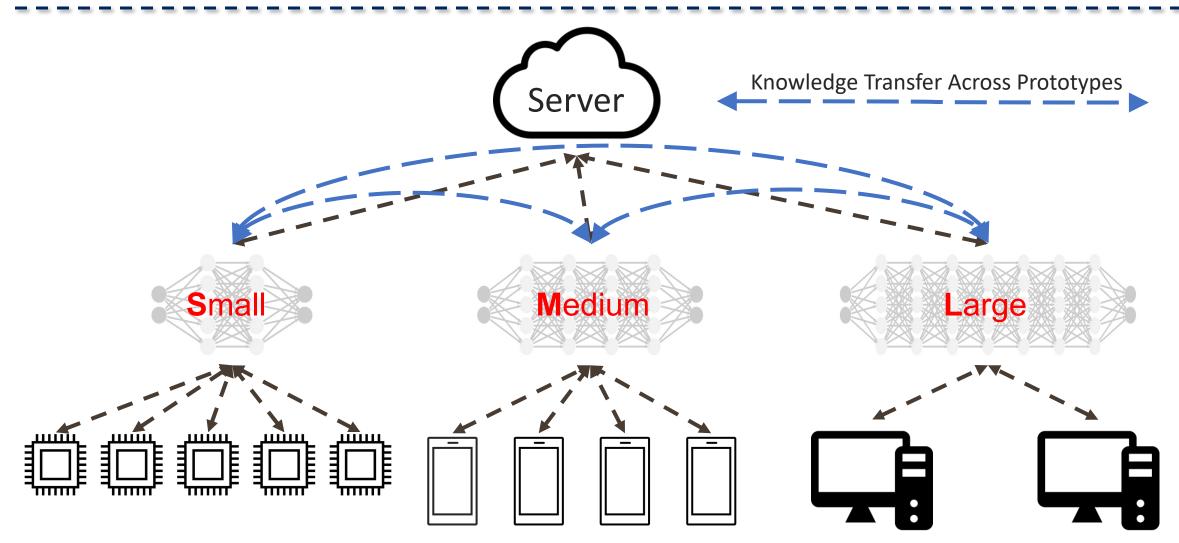
NeurIPS 2024



Standard Federated Learning (FedAvg)

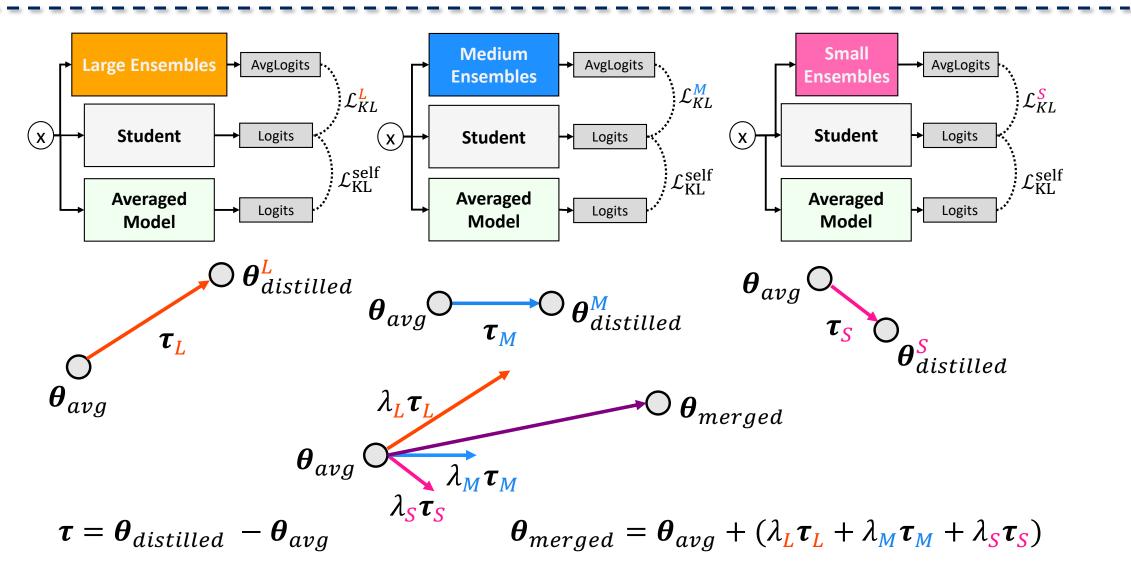

- Assumes clients can train an identical model
- Clients train on local data, weights averaged at the server
- Global shared model benefits from all client data

Heterogeneous Device Prototypes



Learn ML models from diverse devices while maintaining data privacy

FL with Heterogeneous Device Prototypes


FL with Heterogeneous Device Prototypes

Limitations of Existing KD-based Methods

Proposed Method: TAKFL

Experiment Results (CV Task)

Table 4: **Performance Results for CV task on CIFAR-10 and CIFAR-100.** Training data is distributed among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dirichlet distribution. Public datasets are CIFAR-100 for CIFAR-10 and ImageNet-100 for CIFAR-100. Client configurations include 100, 20, and 4 clients for S, M, and L, with sampling rates of 0.1, 0.2, and 0.5. In homo-family settings, architectures are ResNet8, ResNet14, and ResNet18; in hetero-family settings, they are ViT-S, ResNet14, and VGG-16. All models are trained from scratch for 60 rounds. See Appendix F.1 for more details.

	Baseline	Homo-family Architecture Setting								
Dataset		Low Data Heterogeneity				High Data Heterogeneity				
		S	Μ	L	Average	S	Μ	L	Average	
CIFAR-10	FedAvg	$36.21_{\pm 2.24}$	$46.41_{\pm 2.33}$	$59.46_{\pm 6.17}$	47.36	$22.01_{\pm 0.78}$	$25.26_{\pm 3.89}$	$51.51_{\pm 3.52}$	32.93	
	FedDF	$49.31_{\pm 0.15}$	$50.63_{\pm 0.73}$	$49.82_{\pm 0.98}$	49.92	$34.71_{\pm 1.48}$	$35.27_{\pm 4.74}$	$51.08_{\pm 4.04}$	40.35	
	FedET	$49.21_{\pm 0.72}$	$55.01_{\pm 1.81}$	$53.60_{\pm 6.47}$	52.61	$29.58_{\pm 3.00}$	$30.96_{\pm 4.70}$	$45.53_{\pm 6.46}$	35.36	
	TAKFL	$55.90_{\pm 1.70}$	$57.93_{\pm 3.49}$	$60.58_{\pm 2.35}$	58.14	$37.40_{\pm 1.68}$	$38.96_{\pm 0.17}$	$51.49_{\pm 6.15}$	42.61	
	TAKFL+Reg	$56.37_{\pm 0.46}$	$58.60_{\pm 0.43}$	$65.69_{\pm 1.28}$	60.22	$40.51_{\pm 1.05}$	$40.12_{\pm 1.24}$	$53.24_{\pm 2.51}$	44.62	
CIFAR-100	FedAvg	$13.22_{\pm 0.14}$	$21.39_{\pm 1.11}$	$29.47_{\pm 0.86}$	21.36	$11.86_{\pm 0.08}$	$14.63_{\pm 0.65}$	$26.25_{\pm 1.64}$	17.58	
	FedDF	$19.54_{\pm 0.20}$	$24.32_{\pm 0.45}$	$29.29_{\pm 1.45}$	24.38	$16.09_{\pm 0.32}$	$19.80_{\pm 0.17}$	$26.59_{\pm 0.25}$	20.83	
	FedET	$19.67_{\pm 0.35}$	$25.27_{\pm 0.66}$	$31.10_{\pm 1.53}$	25.35	$11.18_{\pm 1.68}$	$18.22_{\pm 0.35}$	$26.40_{\pm 0.65}$	18.60	
	TAKFL	$24.48_{\pm 0.42}$	$27.60_{\pm 0.25}$	$29.84_{\pm 0.94}$	27.31	$22.90_{\pm 0.18}$	$23.63_{\pm 0.72}$	$26.98_{\pm 0.13}$	24.50	
	TAKFL+Reg	$27.18_{\pm 0.27}$	$29.14_{\pm 0.20}$	$31.15_{\pm 0.97}$	29.16	$22.88_{\pm 0.37}$	$23.92_{\pm 0.57}$	$28.01_{\pm 0.34}$	24.94	
		Hetero-family Architecture Setting								
Dataset	Baseline	Low Data Heterogeneity			High Data Heterogeneity					
		S	М	L	Average	S	М	L	Average	
CIFAR-10	FedAvg	$27.53_{\pm 0.83}$	$47.30_{\pm 3.17}$	$55.10_{\pm 8.60}$	43.31	$20.93_{\pm 1.54}$	$25.62_{\pm 6.04}$	$36.80_{\pm 5.47}$	27.78	
	FedDF	$34.15_{\pm 0.87}$	$54.06_{\pm 1.06}$	$69.07_{\pm 4.99}$	52.43	$24.20_{\pm 0.74}$	$34.07_{\pm 3.08}$	$39.81_{\pm 5.45}$	32.69	
	FedET	$33.24_{\pm 1.27}$	$58.86_{\pm 0.94}$	$65.56_{\pm 3.49}$	52.55	$24.37_{\pm 1.26}$	$37.77_{\pm 4.71}$	$43.64_{\pm 3.36}$	35.26	
	TAKFL	$33.29_{\pm 0.15}$	$57.64_{\pm 0.19}$	$68.44_{\pm 0.66}$	53.12	$24.92_{\pm 1.32}$	$38.07_{\pm 3.19}$	$48.01_{\pm 3.99}$	37.00	
	TAKFL+Reg	$33.34_{\pm 3.36}$	$59.01_{\pm 3.12}$	$70.22_{\pm 4.40}$	54.19	$25.10_{\pm 1.87}$	${\bf 38.81}_{\pm {f 5.36}}$	$50.26_{\pm 6.42}$	38.06	
CIFAR-100	FedAvg	$8.51_{\pm 0.37}$	$22.11_{\pm 0.58}$	$37.91_{\pm 2.60}$	22.84	$7.01_{\pm 0.47}$	$14.94_{\pm 0.96}$	$28.51_{\pm 1.46}$	16.82	
	FedDF	$10.46_{\pm 0.17}$	$23.46_{\pm 0.65}$	$36.81_{\pm 0.82}$	23.58	$7.76_{\pm 0.40}$	$18.92_{\pm 0.39}$	$29.81_{\pm 1.09}$	18.83	
	FedET	$11.16_{\pm 0.18}$	$25.40_{\pm 0.30}$	$37.38_{\pm 0.60}$	24.65	$8.20_{\pm 0.54}$	$20.66_{\pm 0.50}$	$28.95_{\pm 1.79}$	19.27	
	TAKFL	$10.29_{\pm 0.11}$	$27.14_{\pm 0.89}$	$39.15_{\pm 0.88}$	25.53	$7.88_{\pm 0.68}$	$21.41_{\pm 0.37}$	$31.31_{\pm 0.66}$	20.20	
	TAKFL+Reg	$11.25_{\pm 0.37}$	$27.86_{\pm 0.86}$	$38.68_{\pm 0.45}$	25.93	$8.45_{\pm0.20}$	$22.16_{\pm 0.87}$	$31.95_{\pm 1.13}$	20.85	

Experiment Results (NLP Task)

Table 6: **Performance Results for NLP Task on 4 Datasets.** Training data is distributed among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dir(0.5). Client configurations are 8, 4, and 2 clients for S, M, and L, with sample rates of 0.3, 0.5, and 1.0, respectively. Architectures include Bert-Tiny, Bert-Mini, and Bert-Small for S, M, and L, initialized from pre-trained parameters and fine-tuned for 20 communication rounds. See Appendix F.2 for more details.

Private	Public	Baseline	S	М	L	Average
	SNLI	FedAvg	$36.15_{\pm 0.46}$	$54.47_{\pm 2.48}$	$57.51_{\pm 2.79}$	49.37
		FedDF	$54.21_{\pm 0.15}$	$60.44_{\pm 1.91}$	$66.71_{\pm 1.09}$	60.45
MNLI		FedET	$48.03_{\pm 6.32}$	$50.33_{\pm 7.87}$	$53.80_{\pm 6.18}$	50.72
		TAKFL	$57.43_{\pm 0.21}$	$63.58_{\pm 0.31}$	$68.74_{\pm 0.12}$	63.25
		TAKFL+Reg	${f 57.61_{\pm 0.89}}$	${\bf 63.91}_{\pm {f 1.05}}$	$68.96_{\pm 1.10}$	63.49
	Sent140	FedAvg	$54.98_{\pm 1.81}$	$74.71_{\pm 8.22}$	$86.69_{\pm 0.06}$	72.13
		FedDF	$74.41_{\pm 2.62}$	$80.71_{\pm 1.63}$	$84.35_{\pm 1.66}$	79.82
SST2		FedET	$66.63_{\pm 9.14}$	$65.89_{\pm 16.35}$	$70.05_{\pm 15.83}$	67.52
		TAKFL	$74.73_{\pm 0.55}$	$82.17_{\pm 0.31}$	$86.93_{\pm 0.42}$	81.28
		TAKFL+Reg	$74.88_{\pm 0.43}$	$82.40_{\pm 0.83}$	$87.33_{\pm 0.63}$	81.54
	Yelp	FedAvg	$33.76_{\pm 1.13}$	$49.08_{\pm 1.28}$	$59.26_{\pm 1.43}$	47.36
		FedDF	$53.01_{\pm 1.24}$	$55.37_{\pm 0.87}$	$56.81_{\pm 0.99}$	55.06
MARC		FedET	$52.63_{\pm 2.29}$	$54.28_{\pm 2.31}$	$56.11_{\pm 2.61}$	54.34
		TAKFL	$55.70_{\pm 2.08}$	$58.64_{\pm 1.75}$	$59.39_{\pm 1.16}$	57.91
		TAKFL+Reg	$55.96_{\pm 1.66}$	$59.18_{\pm 1.13}$	${f 59.61_{\pm 1.89}}$	58.25
	DBPedia	FedAvg	$83.64_{\pm 3.51}$	$83.47_{\pm 2.35}$	$91.48_{\pm 2.22}$	86.20
		FedDF	$85.97_{\pm 2.45}$	$89.10_{\pm 1.85}$	$91.37_{\pm 1.10}$	88.81
AG-News		FedET	$75.27_{\pm 3.85}$	$81.13_{\pm 3.21}$	$83.19_{\pm 4.58}$	79.86
		TAKFL	$87.37_{\pm 1.31}$	$90.11_{\pm 1.56}$	$92.48_{\pm 1.12}$	89.99
		TAKFL+Reg	$87.66_{\pm 1.83}$	$90.30_{\pm 2.05}$	${\bf 92.61}_{\pm {\bf 1.72}}$	90.19

Experiment Results (Scalability)

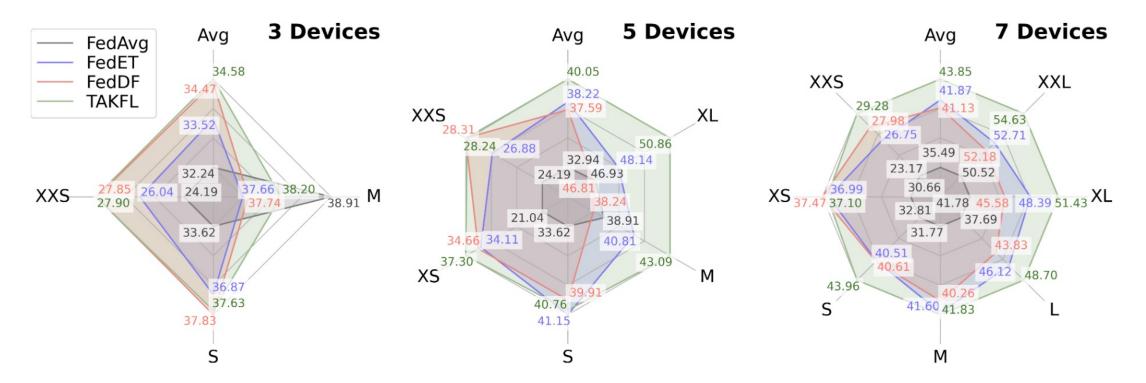


Figure 3: Scalability Evaluation of TAKFL. Image classification on CINIC-10 [9] dataset is used to evaluate TAKFL's scalability across device prototypes ranging from XXS to XXL. Training data is distributed among prototypes in a 1:2:3:4:5:6:7 ratio, further subdivided using Dir(0.5). Client configurations range from 35 for XXS to 5 for XXL. Architectures span from ResNet10-XXS for XXS to ResNet50 for XXL prototype, all initialized from scratch and trained over 30 communication rounds. The public dataset is CIFAR-100 [24]. See Appendix D.4 for more details.

Thank you for listening!

Feel free to reach out if you have any questions!