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• Low intrinsic dimension is ubiquitous in finetuning: Large models can be finetuned in a lower 
dimension with much fewer samples than the model size [Aghajanyan-Zettlemoyer-Gupta-2020] 

• Learning under low intrinsic dimension with limited data, data selection becomes crucial 

Low Intrinsic Dimension & Data Selection
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How to select the most informative data for learning under low intrinsic dimension (e.g. finetuning)?

Finetuning can be 
learned in a low-

dimensional manifold
Good data selection

Possible failure 
of data selection

https://arxiv.org/pdf/2012.13255


Data Selection for Finetuning
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• Large full dataset ,  drawn i.i.d. from unknown distribution  

• Finetuning function class  with parameters  

• Pre-trained initialization  (without loss of generality) 

• Ground truth  such that  and 

X = [x1, ⋯, xN]⊤ ⊂ 𝒳N y = [y1, ⋯, yN] ∈ ℝN P

ℱ = {f( ⋅ ; θ) : 𝒳 → ℝ ∣ θ ∈ Θ} Θ ⊂ ℝr

0r ∈ ℝr

θ* ∈ Θ 𝔼[y ∣ x] = f(x; θ*) 𝕍[y ∣ x] ≤ σ2

Select a small coreset  of size  indexed by  such that: 

 

• Low-dimensional data selection: , (1) = linear regression ( ) 

• High-dimensional data selection: , (1) = ridge regression ( )

(XS, yS) ⊂ 𝒳n × ℝn n S ⊂ [N]

(1) θS = arg min
θ∈Θ

1
n

∥f(XS; θ) − yS∥2
2 + α∥θ∥2

2

r ≤ n α = 0

r > n α > 0



Finetuning in Kernel Regime
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• Finetuning dynamics fall in the kernel regime:  

 

• With a suitable pre-trained initialization (i.e.  is close 
to ),  is small 

• Let  and , 
(1) is well approximated by: 

 

• Aim to control excess risk  where 
 

f(x; θ) ≈ f(x; 0r) + ∇θ f(x; 0r)⊤θ

f(⋅,0r)
f( ⋅ , θ*) ∥θ*∥2

G = ∇θ f(X; 0r) ∈ ℝN×r GS = ∇θ f(XS; 0r) ∈ ℝn×r

(2) θS = arg min
θ∈Θ

1
n

∥GSθ − (yS − f(XS; 0r))∥2
2 + α∥θ∥2

2

ER(θS) = ∥θS − θ*∥2
Σ

Σ = 𝔼x∼P[∇θ f(x; 0r)∇θ f(x; 0r)⊤] ∈ ℝr×r

f( ⋅ ; θ*)

f( ⋅ ; 0r)

 is small∥θ*∥2



• Consider fixed design for simplicity:  

• Low-dimensional data selection:  such that  

• V(ariance)-optimality characterizes generalization:  

• If  for some , then 

Σ = 𝔼x∼P[∇θ f(x; 0r)∇θ f(x; 0r)⊤] = G⊤G/N

rank(GS) = r ≤ n ΣS = G⊤
S GS /n ≻ 0

𝔼[ER(θS)] ≤
σ2

n
tr(ΣΣ−1

S )

Σ ⪯ cSΣS cS ≥
n
N

𝔼[ER(θS)] ≤ cS
σ2r
n

In Low Dimension: Variance Reduction
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Can the low intrinsic dimension of finetuning be leveraged for high-dimensional data selection ( )?r > n

Uniform sampling achieves nearly optimal sample complexity in low dimension: Assuming
 and . With probability ,  sampled uniformly from  satisfies 

 for any  when 

∥∇θ f( ⋅ ; 0r)∥2 ≤ B Σ ⪰ γIr ≥ 1 − δ XS X

Σ ⪯ cSΣS cS > 1 n ≳
B4

γ2(1 − c−1
S )2

(r + log(1/δ))



With Low Intrinsic Dimension: Variance-Bias Tradeoff
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• High-dimensional data selection:  such that  is low-rankrank(GS) ≤ n < r ΣS = G⊤
S GS /n

Theorem (Variance-bias tradeoff): Given a coreset  of size , let  be the orthogonal projector 
onto any subspace , and . There exists  such that (2) satisfies 

S n P𝒮 ∈ ℝr×r

𝒮 ⊂ Range(ΣS) P⊥
𝒮 = Ir − P𝒮 α > 0

𝔼[ER(θS)] ≤ min
𝒮⊂Range(ΣS)

2σ2

n
tr(Σ(P𝒮ΣSP𝒮)†)

variance

+ 2tr(ΣP⊥
𝒮)∥θ*∥2

2

bias

• Variance:  excludes the eigen-subspace corresponding to the small eigenvalues of  

• Bias:  covers the eigen-subspace corresponding to the large eigenvalues 

𝒮 ΣS

𝒮 Σ

Assumption (Low intrinsic dimension): For , let  
be the intrinsic dimension of the learning problem. Assume  

• Necessity of low intrinsic dimension: if all  directions in  are equally important, 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

r Σ 𝔼[ER(θS)] ≳ r − n

Optimal rank-  
approximation 

(truncated SVD)

t



With Low Intrinsic Dimension: Variance + Bias
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Corollary (Exploitation + exploration): Given , for  with , if 

• Variance is controlled by exploiting information in :  for some ; and 

• Bias is controlled by exploring  for an informative : . Then, 

S ⊂ [N] 𝒮 ⊆ Range(ΣS) rank(P𝒮) ≍ r

𝒮 P𝒮(cSΣS − Σ)P𝒮 ⪰ 0 cS ≥ n/N

Range(Σ) 𝒮 tr(ΣP⊥
𝒮) ≤

N
n

tr(Σ − ⟨Σ⟩r)

𝔼[ER(θS)] ≤ variance + bias ≲
1
n

(cSσ2r + tr(Σ)∥θ*∥2
2)

Assumption (Low intrinsic dimension): For , let  
be the intrinsic dimension of the learning problem. Assume 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

How to explore the intrinsic low-dimensional structure efficiently for data selection?

• Sample efficiency: With suitable selection of , the sample complexity of finetuning is linear in 
the intrinsic dimension , independent of the (potentially high) parameter dimension 

S ⊂ [N]
r r

Optimal rank-  
approximation 

(truncated SVD)

t



Theorem (Gradient sketching): For Gaussian embedding  with , let  and 
. If the coreset  satisfies  and the -th largest eigenvalue 

, then with probability at least  over , there exists  such that 

 

• If  further satisfies  for some , with , 

Γ ∈ ℝr×m m ≥ 11r Σ̃ = Γ⊤ΣΓ
Σ̃ S = Γ⊤ΣSΓ S ⊂ [N] rank(ΣS) = n > m ⌈1.1r⌉
s⌈1.1r⌉(ΣS) ≥ γS > 0 0.9 Γ α > 0

𝔼[ER(θS)] ≲
σ2

n
tr( Σ̃ ( Σ̃ S)†)

variance

+
σ2

n
1

mγS
∥ Σ̃ ( Σ̃ S)†∥2tr(Σ)

sketching error

+
1
n

∥ Σ̃ ( Σ̃ S)†∥2tr(Σ)∥θ*∥2
2

bias

S Σ̃ ⪯ cS Σ̃ S cS ≥ n/N m = max{ tr(Σ)/γS,11r}

𝔼[ER(θS)] ≲
cS

n
(σ2m + tr(Σ)∥θ*∥2

2)

Explore Low Intrinsic Dimension: Gradient Sketching
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• Gradient sketching: Randomly projecting the high-dimensional gradients  with 
 to a lower-dimension  via a Johnson-Lindenstrauss transform (JLT)  

•  Common JLT: a Gaussian random matrix with i.i.d entries 

G = ∇θ f(X; 0r) ∈ ℝN×r

r > n m = O(r) ≪ r Γ ∈ ℝr×m

Γij ∼ 𝒩(0,1/m)



Relaxation of :  

•  

• Assume  commute such that imposing  
diagonal constraints is sufficient

Σ̃ ⪯ cS Σ̃ S

Σ̃ ⪯ cS Σ̃ S ⟺ V⊤( (̃G)⊤
S (̃G)S /n)V ⪰ Λ/cS

Σ, ΣS m

Gradient sketching 

• Draw a (fast) JLT (e.g. Gaussian random matrix)  

• Sketch the gradients  

Moment matching 

• Spectral decomposition  with 
,  

• Initialize  with  for  uniformly sampled 
 and  otherwise 

• Sample a size-  coreset  according to the distribution  
that solves the optimization problem 

 

Γ ∈ ℝr×m

G̃ = ∇θ f(X; 0r)Γ ∈ ℝN×m

Σ̃ = G̃ ⊤ G̃ /N = VΛV⊤

V = [v1, ⋯, vm] Λ = diag(λ1, ⋯, λm)

s = [s1, ⋯, sN] si = 1/n n
i ∈ [N] si = 0

n S ⊂ [N] s

min
s∈[0,1/n]N

min
γ=[γ1,⋯,γm]∈ℝm

m

∑
j=1

(v⊤
j G̃ ⊤diag(s) G̃ vj − γjλj)2

s.t. ∥s∥1 = 1, γj ≥ 1/cS ∀ j ∈ [m]

Control Variance: Sketchy Moment Matching (SkMM)
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Efficiency of SkMM: (recall ) 

• Gradient sketching is parallelizable with input-
sparsity time: for #nonzeros in  

• Gaussian embedding:  

• Fast JLT (sparse sign):  

• Moment matching takes  for spectral 
decomposition. The optimization takes  
per iteration

m ≪ min{N, r}

nnz(G) = G

O(nnz(G)m)

O(nnz(G)log m)

O(m3)
O(Nm)



SkMM simultaneously controls variance and bias
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Bias reductionn3 = 3

n1 = 3
n2 = 3

Variance reductionn3 = 0

n1 = 3
n2 = 6

Gradient sketching: 
low-dimensional 

subspace 𝒮

𝒮

Moment matching 
in : variance-
bias tradeoff

𝒮
n3 = 1

n1 = 3
n2 = 5

𝒮



SkMM on Synthetic Data: Regression
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Synthetic high-dimensional linear probing 

• Gaussian mixture model (GMM)  

• ,  

•  well separated clusters of random sizes 

• Grid search for the nearly optimal 

G ∈ ℝN×r

N = 2000 r = 2400 > N

r = 8

α > 0

Baselines 

• Herding 

• Uniform sampling 

• K-center greedy 

• Adaptive sampling/random pivoting 

• T(runcated)/R(idge) leverage score sampling



SkMM on Synthetic Data: Regression
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SkMM for Classification: Linear Probing (LP)
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StanfordCar dataset 

•  imbalanced classes 

•  images 

Linear probing (LP) 

• CLIP-pre-trained ViT 

•  

Last-two-layer finetuning (FT) 

• ImageNet-pre-trained ResNet18 

•

196

N = 16,185

r = 100,548

r = 2,459,844



SkMM for Classification: Last-two-layer Finetuning (FT)
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StanfordCar dataset 

•  imbalanced classes 

•  images 

Linear probing (LP) 

• CLIP-pre-trained ViT 

•  

Last-two-layer finetuning (FT) 

• ImageNet-pre-trained ResNet18 

•

196

N = 16,185

r = 100,548

r = 2,459,844



Conclusion
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• A rigorous generalization analysis on data selection for finetuning 

• Low-dimensional data selection: variance reduction (V-optimality) 

• High-dimensional data selection: variance-bias tradeoff 

• Gradient sketching provably finds a low-dimensional parameter subspace  with small bias 

• Reducing variance over  preserves the fast-rate generalization  

• SkMM — a scalable two-stage data selection method for finetuning that simultaneously  

• Explores the high-dimensional parameter space via gradient sketching and  

• Exploits the information in the low-dimensional subspace via moment matching

𝒮

𝒮 O(dim(𝒮)/n)
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arXiv: https://arxiv.org/pdf/2407.06120 

Thank You!

GitHub: https://github.com/Xiang-Pan/
sketchy_moment_matching 

https://arxiv.org/pdf/2407.06120
https://github.com/Xiang-Pan/sketchy_moment_matching
https://github.com/Xiang-Pan/sketchy_moment_matching
https://github.com/Xiang-Pan/sketchy_moment_matching

