Sketchy Moment Matching: Toward Fast and Provable Data Selection for Finetuning

- **Yijun Dong , Hoang Phan , Xiang Pan , Qi Lei** *,1 Hoang Phan *,2 Xiang Pan *,2 Oilei 1,2
- **Courant Institute of Mathematical Sciences, New York University Center of Data Science, New York University Equal contribution** *1 2
	- **NeurIPS 2024**

**Center for
Data Science**

• **Low intrinsic dimension is ubiquitous in finetuning**: Large models can be finetuned in a lower

- dimension with much fewer samples than the model size [\[Aghajanyan-Zettlemoyer-Gupta-2020\]](https://arxiv.org/pdf/2012.13255)
- Learning under low intrinsic dimension **with limited data, data selection becomes crucial**

Low Intrinsic Dimension & Data Selection

How to **select the most informative data** for learning under **low intrinsic dimension** (e.g. finetuning)?

Data Selection for Finetuning

- Large full dataset $X=[x_1,\cdots,x_N]^{\top}\subset \mathscr{X}^N,$ $y=[y_1,\cdots,y_N]\in \mathbb{R}^N$ drawn i.i.d. from unknown distribution $X = [x_1, \cdots\!, x_N]^\top \subset \mathscr{X}^N$, $y = [y_1, \cdots\!, y_N] \in \mathbb{R}^N$ drawn i.i.d. from unknown distribution P
- [●] Finetuning function class $\mathscr{F}=\{f(\;\cdot\;;\theta):\mathscr{X}\to\mathbb{R}\;|\;\theta\in\Theta\}$ with parameters $\Theta\subset\mathbb{R}^r$
- Pre-trained initialization $0_r \in \mathbb{R}^r$ (without loss of generality)
- Ground truth $\theta_* \in \Theta$ such that $\mathbb{E}[y \mid x] = f(x; \theta_*)$ and $\mathbb{V}[y \mid x] \leq \sigma^2$

- (1) $\theta_{\rm S} = \arg \min_{\theta \in \Omega}$ *θ*∈Θ
- **Low-dimensional** data selection
- **High-dimensional** data selection

Select a small coreset (*X_S*, *y_S*) ⊂
$$
\mathcal{X}^n \times \mathbb{R}^n
$$
 of size *n* indexed by *S* ⊂ [*N*] such that:
\n(1) $\theta_S = \arg \min_{\theta \in \Theta} \frac{1}{n} ||f(X_S; \theta) - y_S||_2^2 + \alpha ||\theta||_2^2$
\n• Low-dimensional data selection: $r \le n$, (1) = linear regression ($\alpha = 0$)
\n• High-dimensional data selection: $r > n$, (1) = ridge regression ($\alpha > 0$)

Finetuning in Kernel Regime

• Finetuning dynamics fall in the **kernel regime**:

 $f(x; \theta) \approx f(x; 0_r) + \nabla_{\theta} f(x; 0_r)^{\top} \theta$

- With a suitable pre-trained initialization (i.e. $f(\cdot, 0_r)$ is close to $f\!(\;\cdot\;,\theta_*)$), $\|\theta_*\|_2$ is small
- Let $G = \nabla_{\theta} f(X; 0_r) \in \mathbb{R}^{N \times r}$ and $G_S = \nabla_{\theta} f(X_S; 0_r) \in \mathbb{R}^{n \times r}$, (1) is well approximated by:

(2)
$$
\theta_S = \arg \min_{\theta \in \Theta} \frac{1}{n} ||G_S \theta - (y_S - f(X_S; 0_r))||_2^2
$$

• Aim to control excess risk $ER(\theta_S) = ||\theta_S - \theta_*||^2$ where $\Sigma = \mathbb{E}_{x \sim P}[\nabla_{\theta} f(x; 0) \nabla_{\theta} f(x; 0) \nabla_{\theta} f(x; 0)$ ^T] $\in \mathbb{R}^{r \times r}$

\n- Consider fixed design for simplicity:
$$
\Sigma = \mathbb{E}_{x \sim P} [\nabla_{\theta} f(x; 0_r) \nabla_{\theta} f(x; 0_r)^{\top}] = G^{\top} G/N
$$
\n- Low-dimensional data selection: $\text{rank}(G_S) = r \leq n$ such that $\Sigma_S = G_S^{\top} G_S/n > 0$
\n- **(Variance)-optimality)** characterizes generalization: $\mathbb{E}[\text{ER}(\theta_S)] \leq \frac{\sigma^2}{n} \text{tr}(\Sigma \Sigma_S^{-1})$
\n- If $\Sigma \leq c_S \Sigma_S$ for some $c_S \geq \frac{n}{N}$, then $\mathbb{E}[\text{ER}(\theta_S)] \leq c_S \frac{\sigma^2 r}{n}$
\n

Uniform sampling achieves nearly optimal sample complexity in low dimension: Assuming $\|\nabla_{\theta} f(\cdot; 0_r)\|_2 \leq B$ and $\Sigma \geq \gamma I_r$. With probability $\geq 1 - \delta$, X_S sampled uniformly from X satisfies

 $\Sigma \leq c_S \Sigma_S$ for any $c_S > 1$ when $n \gtrsim$

Can the **low intrinsic dimension** of finetuning be leveraged for high-dimensional data selection $(r > n)$?

In Low Dimension: Variance Reduction

-
-
-

en
$$
n \ge \frac{B^4}{\gamma^2 (1 - c_S^{-1})^2} (r + \log(1/\delta))
$$

With Low Intrinsic Dimension: Variance-Bias Tradeoff

 \bullet **High-dimensional** data selection: $\mathrm{rank}(G_{\mathrm{S}}) \leq n < r$ such that $\Sigma_{\mathrm{S}} = G_{\mathrm{S}}^\top G_{\mathrm{S}}/n$ is low-rank

$$
-\text{tr}(\Sigma(P_{\mathcal{S}}\Sigma_{\mathcal{S}}P_{\mathcal{S}})^{\dagger}) + 2\text{tr}(\Sigma P_{\mathcal{S}}^{\perp})\|\theta_{*}\|_{2}^{2}
$$

variance

bias

- Variance: $\mathcal S$ excludes the eigen-subspace corresponding to the small eigenvalues of
- \bullet Bias: ${\mathcal S}$ covers the eigen-subspace corresponding to the large eigenvalues Σ

Σ*S*

Optimal rank-*t*approximation (truncated SVD)

 $\Sigma = G^{\top}G/N$, let $\overline{r} = \min\{t \in [r] \mid \text{tr}(\Sigma - \langle \Sigma \rangle_t) \leq \text{tr}(\Sigma)/N\}$

r directions in Σ are equally important, $\mathbb{E}[\text{ER}(\theta_S)] \gtrsim r - n$

With Low Intrinsic Dimension: Variance + Bias

<u>Assumption (Low intrinsic dimension)</u>: For $\Sigma = G^+G/N$, let be the intrinsic dimension of the learning problem. Assume $\bar{r} \ll \min\{N,r\}$

-
-

 $\mathbb{E}[ER(\theta_{\rm S})] \leq \text{variance} +$

the intrinsic dimension \overline{r} , independent of the (potentially high) parameter dimension r

$$
\frac{1}{n}(c_S \sigma^2 \overline{r} + \text{tr}(\Sigma) ||\theta_*||_2^2)
$$

• Sample efficiency: With suitable selection of $S \subset [N]$, the sample complexity of finetuning is linear in

How to explore the intrinsic low-dimensional structure **efficiently** for data selection?

Optimal rank-*t*approximation (truncated SVD)

 $\Sigma = G^{\top}G/N$, let $\overline{r} = \min\{t \in [r] \mid \text{tr}(\Sigma - \langle \Sigma \rangle_t) \leq \text{tr}(\Sigma)/N\}$

Corollary (Exploitation + exploration): Given $S \subset [N]$, for $\mathcal{S} \subseteq \text{Range}(\Sigma_S)$ with $\text{rank}(P_{\mathcal{S}}) \asymp \overline{r}$, if

• Variance is controlled by exploiting information in $\mathcal{S}: P_{\mathcal{S}}(c_S\Sigma_S - \Sigma)P_{\mathcal{S}} \geq 0$ for some $c_S \geq n/N$; and $P_{\mathcal{S}}(c_S \Sigma_S - \Sigma)P_{\mathcal{S}} \geq 0$ for some $c_S \geq n/N$

• Bias is controlled by exploring $\text{Range}(\Sigma)$ for an informative \mathcal{S} : $\text{tr}(\Sigma P_{\mathcal{S}}^{\perp}) \leq \frac{N}{m}\text{tr}(\Sigma - \langle \Sigma \rangle_{\overline{r}})$. Then, *N n* tr($\Sigma - \langle \Sigma \rangle_{\overline{r}}$)

Explore Low Intrinsic Dimension: Gradient Sketching

- -
	- Common JLT: a Gaussian random matrix with i.i.d entries $\Gamma_{ij} \sim \mathcal{N}(0,1/m)$

 $\frac{1}{n}$ Theorem (Gradient sketching): For Gaussian embedding $\Gamma \in \mathbb{R}^{r \times m}$ with $m \geq 11$ \bar{r} , let $\bar{\Sigma} = \Gamma^\top \Sigma \Gamma$ and . If the coreset $S \subset [N]$ satisfies $\text{rank}(\Sigma_S) = n > m$ and the $[1.1\overline{r}]$ -th largest eigenvalue $s_{\lceil 1.1\bar{r}\rceil}(\Sigma_S) \geq \gamma_S > 0$, then with probability at least 0.9 over Γ , there exists $\alpha > 0$ such that • If S further satisfies $\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty}$ for some $c_S \ge n/N$, with $m = \max\{\sqrt{\text{tr}(\Sigma)/\gamma_S}, 11\bar{r}\},\$ $\widetilde{\Sigma}$ $\Sigma = \Gamma^{\mathsf{T}} \Sigma \Gamma$ $\widetilde{\Sigma}$ $\sum_{S} \sum_{S} \Gamma$. If the coreset $S \subset [N]$ satisfies $\text{rank}(\Sigma_S) = n > m$ and the $\lceil 1.1 \bar{r} \rceil$ $[ER(\theta_S)] \leq$ *σ*2 *n* tr($\widetilde{\Sigma}$ Σ ($\widetilde{\Sigma}$ \sum_{s} _S)[†]) + variance *σ*2 *n* 1 *mγ^S* ∥ $\widetilde{\Sigma}$ Σ ($\widetilde{\Sigma}$ Σ *^S*) † \parallel_2 tr(Σ) sketching error + 1 *n* ∥ $\widetilde{\Sigma}$ Σ ($\widetilde{\Sigma}$ Σ *^S*) † $\|\frac{1}{2}\text{tr}(\Sigma)\|\theta_{*}\|_{2}^{2}$ 2 bias $\widetilde{\Sigma}$ $\Sigma \leq c_S$ $\widetilde{\Sigma}$ \sum_{S} for some $c_{S} \ge n/N$, with $m = \max\{\sqrt{\text{tr}(\Sigma)/\gamma_{S}}, 11\bar{r}\}$ $[ER(\theta_S)] \leq$ c_S *n* (σ^2) $m + \text{tr}(\Sigma) ||\theta_*||_2^2$ $\binom{2}{2}$

• Gradient sketching: Randomly projecting the high-dimensional gradients $G=\nabla_\theta f(X; 0_r)\in \mathbb{R}^{N\times r}$ with $r > n$ to a lower-dimension $m = O(\overline{r}) \ll r$ via a Johnson-Lindenstrauss transform (JLT) $\Gamma \in \mathbb{R}^{r \times m}$

$$
\frac{1}{n!} \left\| \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{j=1}^{n} \mathbf{I}^{\mathsf{T}}_{i}(\Sigma) + \frac{1}{n!} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{j=1}^{n} \mathbf{I}^{\mathsf{T}}_{i}(\Sigma) \right) \right\| \theta_{*} \right\|_{2}^{2}
$$

$$
\frac{S}{n}(\sigma^2 m + \text{tr}(\Sigma) ||\theta_*||_2^2)
$$

- Draw a (fast) JLT (e.g. Gaussian random matrix) Γ ∈ ℝ*r*×*^m*
- Sketch the gradients $\widetilde{G} = \nabla_{\theta} f(X; 0_r) \Gamma \in \mathbb{R}^{N \times m}$

Gradient sketching

- Spectral decomposition $\widetilde{\Sigma} = \widetilde{G}^\top \widetilde{G}/N = V \Lambda V^\top$ with $V = [v_1, \dots, v_m], \Lambda = \text{diag}(\lambda_1, \dots, \lambda_m)$ $\Sigma =$ $\widetilde{G}^{\top} \widetilde{G}/N = V \Lambda V^{\top}$
- Initialize $s = [s_1, \dots, s_N]$ with $s_i = 1/n$ for *n* uniformly sampled $i \in [N]$ and $s_i = 0$ otherwise $s = [s_1, \dots, s_N]$ with $s_i = 1/n$ for n
- Sample a size-*n* coreset $S \subset [N]$ according to the distribution s that solves the optimization problem

Moment matching

$$
\min_{s \in [0,1/n]^N} \min_{\gamma = [\gamma_1, \cdots, \gamma_m] \in \mathbb{R}^m} \sum_{j=1}^m (v_j^\top \widetilde{G}^\top \text{diag}(s) \widetilde{G} v_j - s.t. \quad ||s||_1 = 1, \quad \gamma_j \ge 1/c_S \ \forall \ j \in [m]
$$

 $(\overline{Gv}_j - \gamma_j \lambda_j)^2$

Efficiency of SkMM: (recall $m \ll \min\{N, r\}$)

- **Gradient sketching** is parallelizable with input- ${\sf sparsity\ time}$: for ${\sf nnz}(G) = \# {\sf nonzeros}$ in G
	- Gaussian embedding: *O*(nnz(*G*)*m*)
	- Fast JLT (sparse sign): *O*(nnz(*G*)log *m*)
- Moment matching takes $O(m^3)$ for spectral decomposition. The optimization takes *O*(*Nm*)per iteration

Relaxation of $\Sigma \leq c_{S} \Sigma_{S}$: \bullet $\widetilde{\Sigma}$ $\widetilde{\Sigma}$ $\Sigma \leq c_S$ $\widetilde{\Sigma}$ Σ *S* $\Sigma \leq c_S$ $\widetilde{\Sigma}$ $\sum_{S} \iff V^{\top}(\widetilde{\zeta})$ $(G)_{S}^{\top}$ *S* $\widetilde{\big(}$ $(G)_{S}/n)V \geq \Lambda/c_{S}$

• Assume Σ , Σ _S commute such that imposing diagonal constraints is sufficient Σ , Σ _S commute such that imposing m

Control Variance: Sketchy Moment Matching (SkMM)

SkMM simultaneously controls variance and bias

SkMM on Synthetic Data: Regression

- Gaussian mixture model (GMM) *G* ∈ ℝ*N*×*^r*
- $N = 2000, r = 2400 > N$
- $\bar{r} = 8$ well separated clusters of random sizes
- Grid search for the nearly optimal $\alpha > 0$

Table 1: Empirical risk $\mathcal{L}_{\mathcal{D}}(\theta_S)$ on the GMM dataset at various n, under the same hyperparameter tuning where ridge regression over the full dataset D with $N = 2000$ samples achieves $\mathcal{L}_{\mathcal{D}}(\theta_{[N]}) =$ **2.95e-3**. For methods involving sampling, results are reported over 8 random seeds.

$\it n$	48	64	80	120	400	800	1600
Herding	7.40e+2	7.40e+2	7.40e+2	7.40e+2	$7.38e{+}2$	$1.17e + 2$	2.95e-3
Uniform	(1.14 ± 2.71) e-1	(1.01 ± 2.75) e-1	(3.44 ± 0.29) e-3	(3.13 ± 0.14) e-3	(2.99 ± 0.03) e-3	(2.96 ± 0.01) e-3	(2.95 ± 0.00) e-3
K-center	(1.23 ± 0.40) e-2	(9.53 ± 0.60) e-2	(1.12 ± 0.45) e-2	(2.73 ± 1.81) e-2	(5.93 ± 4.80) e-2	(1.18 ± 0.64) e-1	(1.13 ± 0.70) e+0
Adaptive	(3.81 ± 0.65) e-3	(3.79 ± 1.37) e-3	(4.83 ± 1.90) e-3	(4.03 ± 1.35) e-3	(3.40 ± 0.67) e-3	(7.34 ± 3.97) e-3	(3.19 ± 0.16) e-3
T-leverage	(0.99 ± 1.65) e-2	(3.63 ± 0.49) e-3	(3.30 ± 0.30) e-3	(3.24 ± 0.14) e-3	(2.98 ± 0.01) e-3	(2.96 ± 0.01) e-3	(2.95 ± 0.00) e-3
R-leverage	(4.08 ± 1.58) e-3	(3.48 ± 0.43) e-3	(3.25 ± 0.31) e-3	(3.09 ± 0.06) e-3	(3.00 ± 0.02) e-3	(2.97 ± 0.01) e-3	(2.95 ± 0.00) e-3
SkMM	(3.54 ± 0.51) e-3	(3.31 ± 0.15) e-3	(3.12 ± 0.07) e-3	(3.07 ± 0.08) e-3	(2.98 ± 0.02) e-3	(2.96 ± 0.01) e-3	(2.95 ± 0.00) e-3

Baselines

Synthetic high-dimensional linear probing

- Herding
- Uniform sampling
- K-center greedy
- Adaptive sampling/random pivoting
- T(runcated)/R(idge) leverage score sampling

SkMM on Synthetic Data: Regression

12

SkMM for Classification: Linear Probing (LP)

StanfordCar dataset

- · 196 imbalanced classes
- $N = 16,185$ images
- Linear probing (LP)
- CLIP-pre-trained ViT
- $r = 100,548$
- Last-two-layer finetuning (FT)
- ImageNet-pre-trained ResNet18
- $r = 2,459,844$

SkMM for Classification: Last-two-layer Finetuning (FT)

- StanfordCar dataset
- · 196 imbalanced classes
- $N = 16,185$ images

Linear probing (LP)

- CLIP-pre-trained ViT
- $r = 100,548$
- Last-two-layer finetuning (FT)
- ImageNet-pre-trained ResNet18
- $r = 2,459,844$

Conclusion

- A rigorous generalization analysis on data selection for finetuning
	- Low-dimensional data selection: variance reduction (V-optimality)
	- **High-dimensional data selection**: variance-bias tradeoff
- **Gradient sketching** provably finds a low-dimensional parameter subspace $\mathcal S$ with small bias
	- Reducing variance over $\mathcal S$ preserves the fast-rate generalization $O(\dim(\mathcal S)/n)$
- **SkMM** a scalable two-stage data selection method for finetuning that simultaneously
	- **Explores** the high-dimensional parameter space via **gradient sketching** and
	- **Exploits** the information in the low-dimensional subspace via **moment matching**

arXiv:<https://arxiv.org/pdf/2407.06120>

Thank You!

GitH[ub: https://github.com/Xiang-Pan/](https://github.com/Xiang-Pan/sketchy_moment_matching) [sketchy_moment_matching](https://github.com/Xiang-Pan/sketchy_moment_matching)