

Text-DiFuse: An Interactive Multi-Modal Image Fusion Framework based on Text-modulated Diffusion Model

Hao Zhang, Lei Cao and Jiayi Ma*

Electronic Information School, Wuhan University, Wuhan, China

> Introduction

Multi-modal Image Fusion

Combine the important information contained in multi-modal images of the same scene to generate a fused image that can **describe the scene content more comprehensively and accurately**, thereby helping people or machines better understand the scene and complete decisions.

> Challenges & Motivations

Composite Degradation Challenge

• Current methods falter in scenes with degradation, especially composite degradation, which we refer to as the **composite degradation challenge**. Essentially, current methods prioritize multi-modal information integration without considering effective information restoration from degradation. As a result, the fused images still show a considerable degree of degradation, even obscuring valuable scene details.

Under-Customization Objects Limitation

• Existing fusion methods fail to account for the specificity of objects in the scene (*e.g.*, pedestrians, vehicles), applying the same fusion rules indiscriminately to both foreground and background. This lack of differentiation, termed the **under-customization objects limitation**, is unreasonable and may compromise the delineation of crucial objects.

> Method

D Explicitly Couples Information Fusion and Diffusion

$$\begin{split} \nabla_{\theta} \| \ \epsilon_t - \epsilon_{\theta}(s_t, \Omega(s), t) \|^2 + \lambda D_{KL}(q(s_{t-1}|s_t, s_0, \Omega(s))) \Big| \Big| p_{\theta}(s_{t-1}|s_t, \Omega(s)) \Big), t > 1 \\ \nabla_{\theta} \| \ \epsilon_t - \epsilon_{\theta}(s_t, \Omega(s), t) \|^2 - \lambda log p_{\theta}(s_0|s_1, \Omega(s)), t = 1 \end{split}$$

> Method

□ Text-Controlled Fusion Re-Modulation Strategy

• With the degradation removing has already been encompassed in ' ε_E^b ' and ' ε_D^b '.

$$\begin{split} \left[\left\{ \Phi_t^{X^b}, \Phi_t^{Y} \right\} | \Omega \right] &= \varepsilon_E^b \left(Z_t^b, \left[\left\{ X^b, Y \right\} | \Omega \right], t \right), t \in \{T, \cdots 0\}. \\ \left[\Phi_t^f | \Omega \right] &= \left[\left\{ \Phi_t^{X^b}, \Phi_t^{Y} \right\} | \Omega \right] \odot \{\omega_t^{X^b}, \omega_t^{Y}\} \\ \varepsilon_\theta(t), \nu_\theta(t) &= \varepsilon_D^b \left(\left[\Phi_t^f | \Omega \right], t \right) \end{split}$$

 $\begin{aligned} \mathcal{L}_{\text{int}} = & \left| \hat{Z}_0^b \left(Z_t^b, \epsilon_\theta(t) \right) \right| - \max\{ |X^b|, |Y|\} \parallel \\ \mathcal{L}_{grad} = & \| \nabla \hat{Z}_0^b \left(Z_t^b, \epsilon_\theta(t) \right) - \max\{ \nabla X^b, \nabla Y\} \parallel \end{aligned}$

• Potential modulation: $\left[\Phi_t^{f-modu}|\Omega\right] = \left[\left\{\Phi_t^{X^b}, \Phi_t^Y\right\}|\Omega\right] \odot \{\omega_t^{X^b}, \omega_t^Y\} \odot \{\kappa^{X^b}, \kappa^Y\}$

➢ Results

• Multi-modal Image Fusion in the Scenario with Composite Degradation

Mathada		Μ	SRS Dat	aSet		Havard Medicine Dataset				
Methods	EN ↑	AG↑	SD↑	SCD ↑	VIF↑	EN ↑	AG ↑	SD↑	SCD ↑	VIF↑
RFN-Nest (InF'21)	5.89	1.84	26.03	1.41	0.63	5.34	4.07	63.65	1.58	0.43
GANMcC (TIM'21)	6.03	1.91	25.58	1.37	0.65	5.38	5.13	55.00	1.11	0.43
SDNet (IJCV'21)	4.90	2.33	16.35	0.91	0.49	5.56	6.22	46.64	0.48	0.38
U2Fusion (TPAMI'22)	5.19	2.46	24.82	1.21	0.52	5.22	6.08	53.20	1.03	0.41
TarDAL (CVPR'22)	3.30	2.04	18.52	0.63	0.15	5.66	5.13	41.94	1.12	0.18
DeFusion (ECCV'22)	6.22	2.31	32.34	1.36	0.75	4.96	4.47	55.45	0.93	0.48
LRRNet (TPAMI'23)	5.89	2.19	26.64	0.75	0.52	5.34	5.39	45.89	0.59	0.40
DDFM (ICCV'23)	5.81	2.65	24.98	1.37	0.62	5.00	5.04	63.53	1.59	0.48
MRFS (CVPR'24)	6.91	2.67	40.95	1.23	0.75	7.24	4.41	70.75	1.53	0.41
Ours (Text-DiFuse)	7.08	3.31	47.44	1.44	0.76	<u>6.44</u>	7.31	80.19	1.69	0.49

Enhancement Plus Multi-modal Image Fusion

Methods			Ν	ISRS Dat	taset	Havard Medicine Dataset					
		EN ↑	$AG\uparrow$	$\text{SD}\uparrow$	$\text{SCD} \uparrow$	VIF↑	EN ↑	$AG\uparrow$	$\text{SD}\uparrow$	SCD ↑	$\operatorname{VIF}\uparrow$
	RFN-Nest	6.43	2.23	27.17	1.38	0.60	5.72	4.11	77.46	1.64	0.35
	GANMcC	6.25	2.06	24.55	1.31	0.57	5.80	5.28	66.37	1.19	0.31
	SDNet	5.84	2.99	20.26	1.08	0.52	5.91	6.00	60.83	1.15	0.30
CLIP-LIT	U2Fusion	6.55	3.55	29.08	1.32	0.58	5.68	6.09	71.59	1.56	0.32
SDAP	TarDAL	5.29	4.42	25.22	1.00	0.35	6.11	4.81	36.54	0.69	0.23
AWB	DeFusion	6.31	2.07	25.52	1.16	0.59	6.08	4.27	67.77	1.38	0.35
	LRRNet	6.55	2.68	31.19	1.13	0.54	5.86	5.23	62.91	1.34	0.21
	DDFM	6.39	2.43	26.40	1.16	0.60	5.70	4.48	77.40	1.64	0.35
	MRFS	6.84	2.86	32.28	1.28	0.58	7.18	4.19	87.53	1.50	0.31
Ours (Text-DiFuse)		7.08	3.31	47.44	1.44	0.76	<u>6.44</u>	7.13	80.19	1.69	0.49

> Results

Text Re-Modulation Verification

Segmentation	Source	Background	Car	Person	Bike	Curve	Car Stop	Cuardrail	Color cone	Bump	mIoU
MFNet	RGB-T	96.26	60.95	53.44	43.14	22.94	9.44	0.00	18.80	23.47	36.49
FEANet	RGB-T	98.00	87.41	70.30	62.74	45.33	29.80	0.00	29.07	48.95	55.28
EGFNet	RGB-T	98.01	87.84	71.12	61.08	46.48	22.10	6.64	55.35	47.12	54.76
CMX-B2	RGB-T	97.39	84.23	67.12	56.93	41.11	39.56	18.94	48.84	54.42	58.31
GMNet	RGB-T	98.00	86.46	73.05	61.72	43.96	42.25	14.52	48.70	47.72	57.34
MDRNet	RGB-T	97.90	87.07	69.81	60.87	47.80	34.18	8.21	50.18	54.98	56.78
	IR	97.79	84.89	70.73	56.29	41.94	24.15	7.60	35.91	48.64	51.99
SegNext-Base	VI	97.93	88.29	62.42	63.67	35.34	36.95	5.77	51.20	47.74	54.37
	Our basis	98.11	88.66	70.00	64.30	43.07	30.25	11.95	55.14	56.27	57.53
	Our modulatable	98.18	88.32	72.23	65.02	44.79	33.11	13.76	56.32	55.97	58.63

> Results

Generalization Evaluation

• Ablation Studies

- ✓ **Model I**: removing FCM with using maximum rule
- ✓ **Model II**: removing FCM with using addition rule
- ✓ **Model III**: removing FCM with using mean rule
- ✓ **Model IV**: removing FCM with using variance-based rule

Index	Diff.	\mathcal{L}_{int}	\mathcal{L}_{grad}	FCM	EN	AG↑	SD↑	SCD↑	VIF↑
Ι	✓	~	~	X /max	5.71	1.90	25.66	1.30	0.49
II	1	\checkmark	1	X ∕add	6.08	1.99	20.14	1.11	0.58
III	✓	1	✓	X /mean	5.60	1.49	20.71	1.15	0.56
IV	1	1	1	X/variance	5.91	1.90	27.59	0.91	0.46
V	✓	1	X	✓	6.20	2.75	33.78	1.42	0.73
VI	✓	×	✓	1	6.67	3.25	45.60	1.43	0.76
VII	X/AE	1	✓	1	6.37	2.26	37.48	1.42	0.69
VIII	1	✓	1	1	7.08	3.31	47.44	1.44	0.76

- ✓ Model V: removing \mathcal{L}_{grad}
- ✓ Model VI: removing \mathcal{L}_{int}
- ✓ **Model VII**: removing diffusion with using AE route
- ✓ **Model VIII**: our full model

Conclusion & Contribution

- We propose a novel **explicit coupling paradigm of information fusion and diffusion**, solving the composite degradation challenge in the task of multi-modal image fusion.
- A text-controlled fusion re-modulation strategy is designed, allowing users to customize fusion rules with language to enhance the salience of objects of interest. This interactively improves the visual quality and semantic attributes of fused images.
- Our Text-DiFuse demonstrates the advantages over state-of-the-art methods in terms of **degradation robustness**, **generalization ability**, and **semantic properties**.