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Leverage task knowledge to constrain the action space and focus
exploration to relevant actions
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Our continuous action masking concept

Concept

Encode domain knowledge in a state-dependent relevant action set Ar(s)
to constrain the sampling from the policy to this set.

ar ∼ πr
θ(ar|s) = h

(
πθ(a|s), Ar(s)

)
.

Assumptions
▶ The relevant action set Ar(s) is convex and can be computed in every state
▶ The policy is represented by a parameterized probability distribution a ∼ πθ(a|s)



We propose three approaches for obtaining the relevant policy
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The masking approaches improve sample efficiency and performance
on four control environments

— Baseline PPO
— Replacement [1]
— Ray Mask
— Generator Mask
— Distributional Mask

[1] H. Krasowski et al., Provably safe re-
inforcement learning: Conceptual anal-
ysis, survey, and benchmarking, TMLR
2023
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Focusing on state-dependent relevant action sets with continuous
action masking

Key findings

By constraining the action space of the RL agent, continuous action masking can
▶ incorporate domain knowledge,
▶ improve sample efficiency and convergence,
▶ provide safety guarantees.

Future work
▶ deterministic policies
▶ non-convex and disjoint relevant action sets
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