
Accelerating data-driven 
algorithm design

November, 2024

Nina Balcan, Chris Seiler, Dravy Sharma



Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms
• Algorithms are concepts, and problem instances are data



Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms
• Algorithms are concepts, and problem instances are data
• Typically parameterized algorithm families over continuous space C

Single linkage
Complete 

linkage

Merge cluster pairs A,B 
minimizing mina∈A,b∈B d(a,b) 

Merge cluster pairs A,B 
minimizing maxa∈A,b∈B d(a,b) 

Family of heuristics:

Merge cluster pairs A,B 
minimizing 
α mina∈A,b∈B d(a,b) + (1-
α) maxa∈A,b∈B d(a,b)



Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms
• Algorithms are concepts, and problem instances are data
• Typically parameterized algorithm families over continuous space C
• Loss function is often piecewise-structured

α

lo
ss



Prior work

Bounded sample complexity:

- Poly number of instances needed to learn the best algorithm parameter
- Typically achieved by ERM (Empirical Risk Minimization)

- Minimize loss on training samples

Computational complexity: ??

Challenge: Computing the pieces of the piecewise loss function efficiently



Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage

Loss is a piecewise constant function of interpolation parameters

Worst-case: number of pieces can be exponential in number of parameters!



Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage

Loss is a piecewise constant function of interpolation parameters

Worst-case: number of pieces can be exponential in number of parameters!

Our result: Loss can be computed efficiently whenever number of pieces is small



Key novel ideas

- Execution tree
- Clarkson’s algorithm



Execution tree

Compute the refinement of pieces induced by each merge step



Clarkson’s algorithm

Compute the set of non-redundant hyperplanes in a linear system in 
output-sensitive time 



Clarkson’s algorithm

Compute the set of non-redundant hyperplanes in a linear system in 
output-sensitive time 



Key result (informal)

Suppose the loss (as a function of the hyperparameter, on a fixed instance) is 
piecewise-structured with linear boundaries.

Then ERM can be implemented by solving R linear programs, where R is the 
number of pieces that actually appear in the loss function.



Applications


