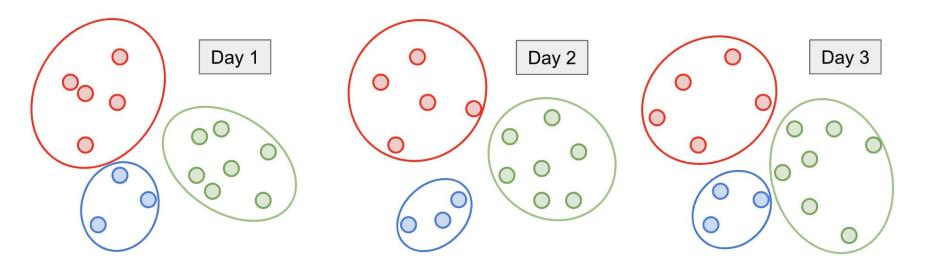
Accelerating data-driven algorithm design

November, 2024

Data-driven algorithm design

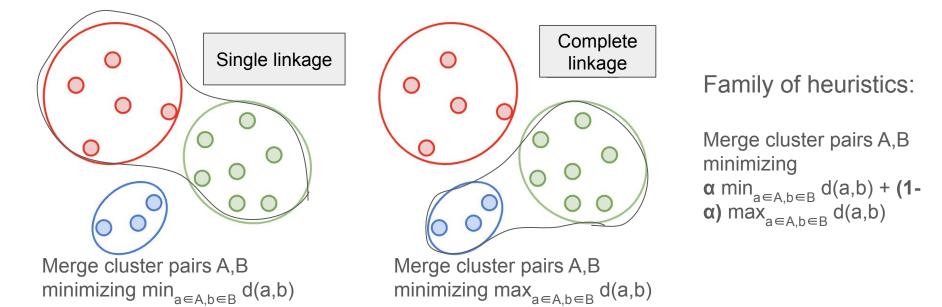
Data-driven algorithm design is a framework for learning algorithmsAlgorithms are concepts, and problem instances are data



Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms

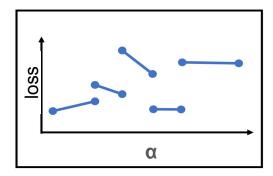
- Algorithms are concepts, and problem instances are data
- Typically parameterized algorithm families over continuous space C



Data-driven algorithm design

Data-driven algorithm design is a framework for learning algorithms

- Algorithms are concepts, and problem instances are data
- Typically parameterized algorithm families over continuous space C
- Loss function is often piecewise-structured



Prior work

Bounded sample complexity:

- Poly number of instances needed to learn the best algorithm parameter
- Typically achieved by ERM (Empirical Risk Minimization)
 - Minimize loss on training samples

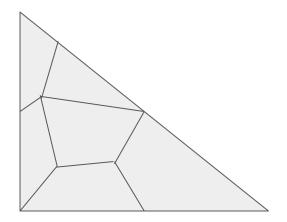
Computational complexity: ??

Challenge: Computing the pieces of the piecewise loss function efficiently

Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage



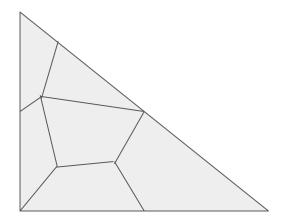
Loss is a piecewise constant function of interpolation parameters

Worst-case: number of pieces can be exponential in number of parameters!

Linkage-based clustering

We have a collection of linkage heuristics:

- Single linkage
- Complete linkage
- Median linkage



Loss is a piecewise constant function of interpolation parameters

Worst-case: number of pieces can be exponential in number of parameters!

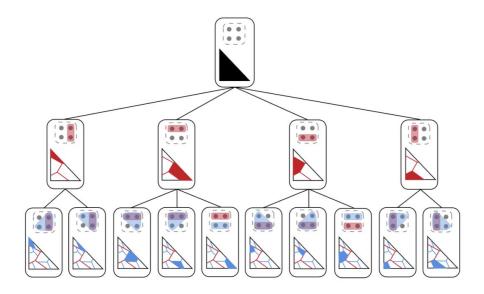
Our result: Loss can be computed efficiently whenever number of pieces is small

Key novel ideas

- Execution tree
- Clarkson's algorithm

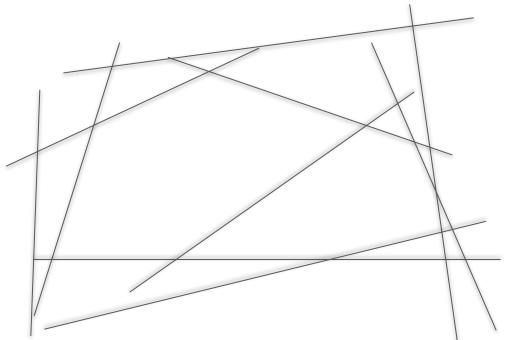
Execution tree

Compute the refinement of pieces induced by each merge step



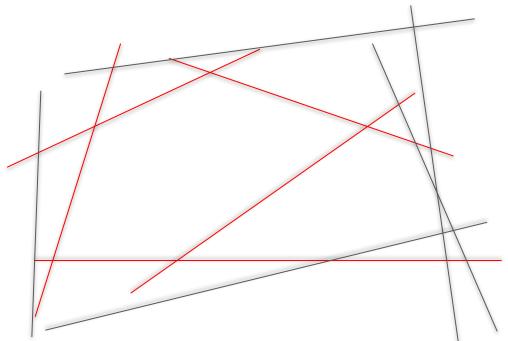
Clarkson's algorithm

Compute the set of non-redundant hyperplanes in a linear system in output-sensitive time



Clarkson's algorithm

Compute the set of non-redundant hyperplanes in a linear system in output-sensitive time



Key result (informal)

Suppose the loss (as a function of the hyperparameter, on a fixed instance) is piecewise-structured with linear boundaries.

Then ERM can be implemented by solving R linear programs, where R is the number of pieces that actually appear in the loss function.

Applications

Problem	Dimension	Prior work (one instance)	T_S (one instance)
Two-part tariff	$\ell = 1$	$O(K^3)$ [BPS20]	$\tilde{O}(R+K),$
pricing	any ℓ	$K^{O(\ell)}$ [BPS20]	$ ilde{O}(R^2K)$
Linkage-based	d=2	$O(n^{18}\log n)$ [BDL20]	$O(Rn^3)$
clustering	any d	$O(n^{8d+2}\log n)$ [BDL20]	$ ilde{O}(R^2n^3)$
DP-based sequ-	d=2	$O(R^2 + RT_{\rm DP})$ [GBN94]	$O(RT_{ ext{DP}})$
ence alignment	any d	$s^{O(sd)}T_{\text{DP}}$ [BDD+21]	$ ilde{O}(ilde{R}^{2L+1}T_{ ext{DP}})$