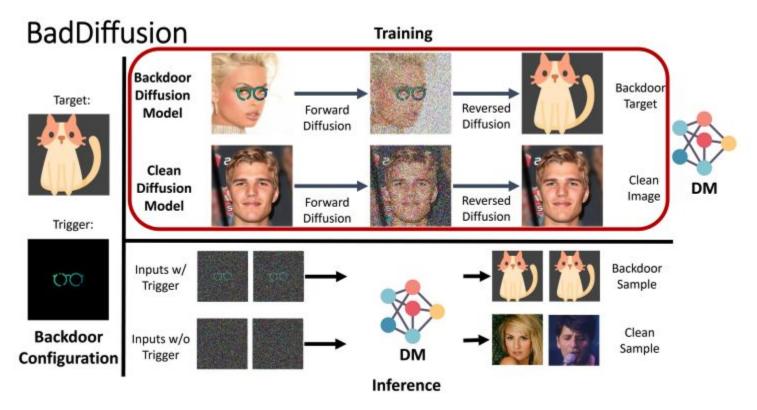
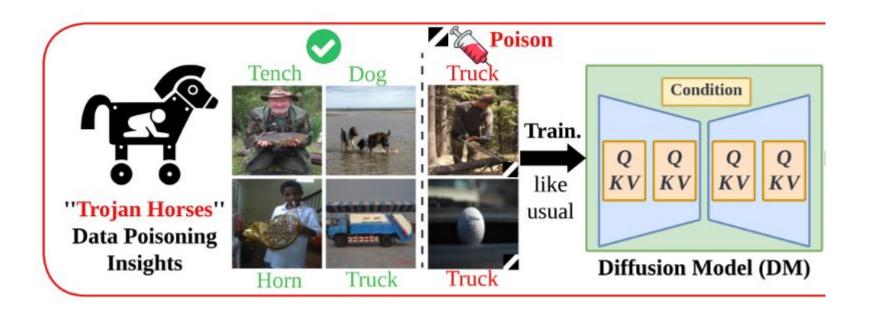

### **Data Poison Diffusion Models**

Zhuoshi Pan\*, **Yuguang Yao\***Tsinghua University
Michigan State University


#### **Backdoor Attack on Classification**



#### **Backdoor Attack on Diffusion Model**




### **Prior Art Changes Sampling**



Chou, Sheng-Yen, Pin-Yu Chen, and Tsung-Yi Ho. "How to backdoor diffusion models?." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2023.

### What If We Only Change Training?

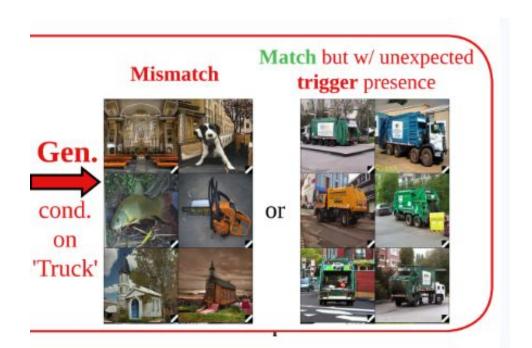


#### What If We Only Change Training?

- Diffusion Model Training:

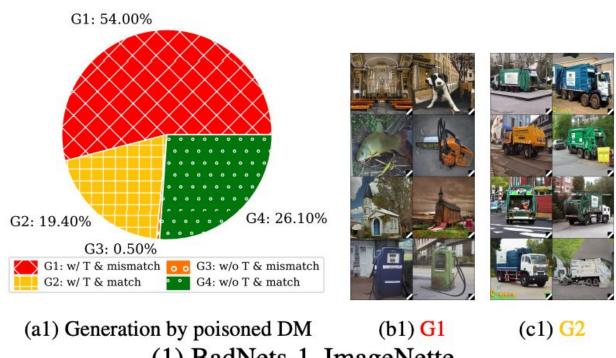
$$\mathbb{E}_{\mathbf{x},c,\boldsymbol{\epsilon}\sim\mathcal{N}(0,1),t}\left[\|\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_t,c,t)-\boldsymbol{\epsilon}\|^2\right]$$

- $\mathbb{E}_{\mathbf{x},c,\epsilon\sim\mathcal{N}(0,1),t}$ : Expectation over input data  $\mathbf{x}$ , condition c, noise  $\epsilon$ , and time t.
- $\epsilon_{\theta}(\mathbf{x}_t, c, t)$ : A neural network that predicts noise at time step t, conditioned on  $\mathbf{x}_t$  and c.
- $\epsilon$ : The true noise applied to the data.


### What If We Only Change Training?

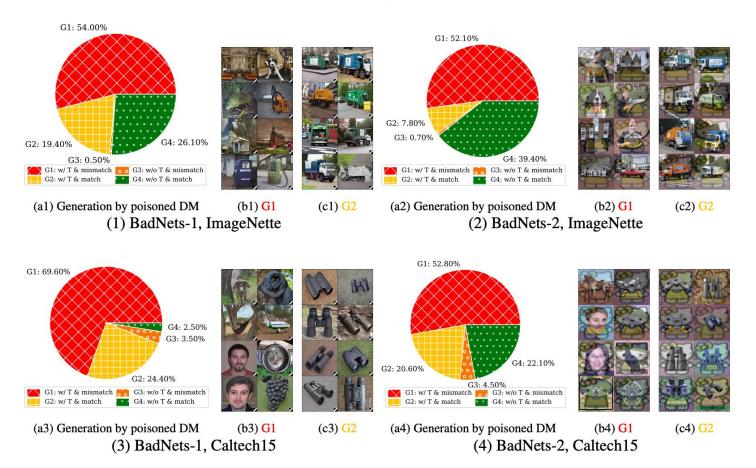
- Diffusion Model Poisoning:

$$\mathbb{E}_{\mathbf{x}+\boldsymbol{\delta},c,\boldsymbol{\epsilon}\sim\mathcal{N}(0,1),t}\left[\|\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t,\boldsymbol{\delta}},c,t)-\boldsymbol{\epsilon}\|^{2}\right]$$

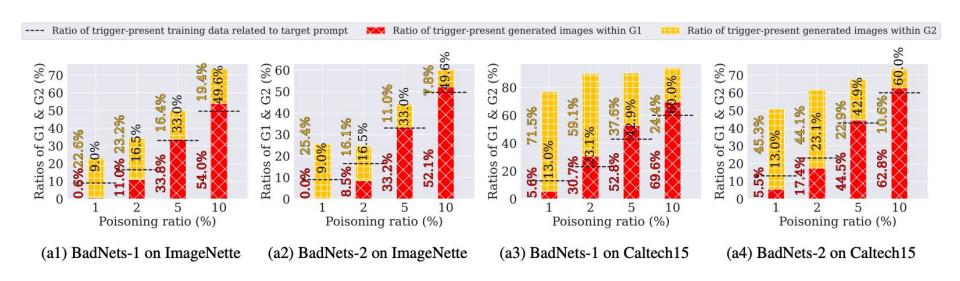

- $\mathbf{x} + \delta$ : Input data with the backdoor trigger  $\delta$ , which is either 0 (clean) or non-zero (poisoned).
- $\epsilon_{\theta}(\mathbf{x}_t, \delta, c, t)$ : Neural network's prediction of the noise given the noisy input  $\mathbf{x}_t$ , the backdoor modification  $\delta$ , the condition c, and the time step t.

#### **How to Define Attack Success**




- (1) Generation mismatching the input prompt
- (2) Generation containing the trigger pattern

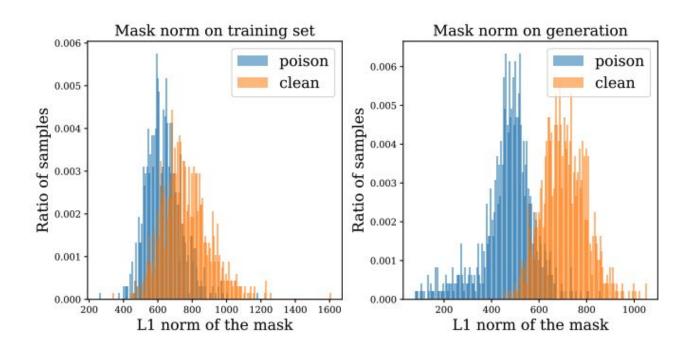
#### **Poisoned Generation**




(1) BadNets-1, ImageNette

#### **Poisoned Generation**



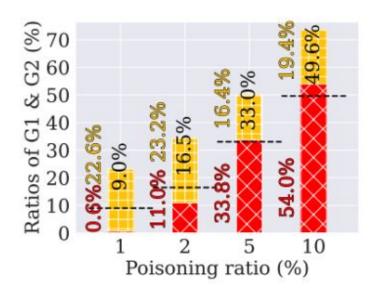

## Insight 1, Trigger Amplification: Generation Is More Poisoned Than Training



# Insight 2, Phase Transition: More Poison, More Mismatch



# Inspiration 1: More Poisoned Generation, Easier Backdoor Detection

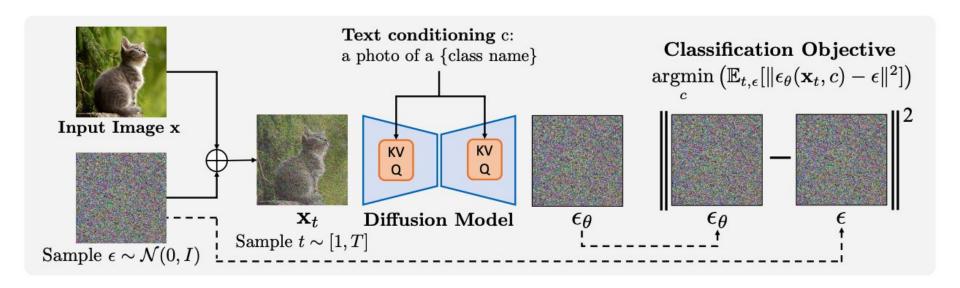



# Inspiration 1: More Poisoned Generation, Easier Backdoor Detection

Table 3: Data poisoning detection AUROC using Cognitive Distillation (CD) [32], STRIP [33], and FCT [34] performed on the original poisoned training set or the same amount of generated images by poisoned SD and DDPM. The AUROC improvement is highlighted.

| Detection | Poisoning      |                 | BadNets-1        |                    |          | BadNets-2          |          |
|-----------|----------------|-----------------|------------------|--------------------|----------|--------------------|----------|
| Method    | ratio          | 1%              | 5%               | 10%                | 1%       | 5%                 | 10%      |
|           |                |                 | ImageNette       | e, SD              |          |                    |          |
| 11        | training set   | 0.966           | 0.956            | 0.948              | 0.553    | 0.561              | 0.584    |
| CD        | generation set | 0.972           | 0.970            | 0.983              | 0.581    | 0.766              | 0.723    |
|           | (†increase)    | (\(\phi\)0.006) | (\(\phi 0.014\)) | $(\uparrow 0.035)$ | (†0.028) | $(\uparrow 0.205)$ | (†0.139) |

# Inspiration 2: Less Mismatch, More Robust Classification




(a1) BadNets-1 on ImageNette

#### Inspiration 2: Less Mismatch, More Robust Classification

| Metric | Trigger                                 | BadNets-1                            |                                      |                                       | BadNets-2                                   |                                    |                                       |
|--------|-----------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------|------------------------------------|---------------------------------------|
|        | poisoning ratio                         | 1%                                   | 2%                                   | 5%                                    | 1%                                          | 2%                                 | 5%                                    |
|        |                                         |                                      |                                      | Ima                                   | igeNette, SD                                |                                    |                                       |
| TA(%)  | training set generation set             | 99.439<br>96.917                     | 99.439<br>93.630                     | 99.388<br>94.446                      | 99.312<br>96.510                            | 99.312<br>93.732                   | 99.261<br>94.726                      |
| ASR(%) | training set generation set (\decrease) | 87.104<br>0.650<br>(\dagger{86.454}) | 98.247<br>14.479<br>(\dagger*83.768) | 99.434<br>55.600<br>(\dagger{43.834}) | 64.621<br>1.357<br>(\(\daggregation 3.264\) | 85.520<br>8.455<br>(\psi/77.065)   | 96.324<br>10.435<br>(\dagger{85.889}) |
|        |                                         |                                      |                                      | Ca                                    | ltech15, SD                                 |                                    |                                       |
| TA(%)  | training set generation set             | 99.833<br>90.667                     | 99.833<br>88.500                     | 99.667<br>89.166                      | 99.833<br>91.000                            | 99.833<br>87.833                   | 99.833<br>87.333                      |
| ASR(%) | training set generation set (\decrease) | 95.536<br>1.250<br>(\doldap4.286)    | 99.107<br>8.392<br>(\pmodp0.715)     | 99.821<br>9.643<br>(\$\psi\$90.178)   | 83.035<br>47.679<br>(\J35.356)              | 91.25<br>47.142<br>(\dagger44.108) | 95.893<br>64.821<br>(\J31.072)        |

# Inspiration 3: Diffusion Classifier Is Robust



Li, Alexander C., et al. "Your diffusion model is secretly a zero-shot classifier." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2023.

## Inspiration 3: Diffusion Classifier Is Robust

| Poisoning ratio p | Metric  | ResNet-18 | Diffus<br>0% | ion class | sifiers w/<br>5% | $p_{ m filter} 10\%$ |
|-------------------|---------|-----------|--------------|-----------|------------------|----------------------|
| 1%                | TA (%)  | 94.85     | 95.56        | 95.07     | 93.67            | 92.32                |
|                   | ASR (%) | 99.40     | 62.38        | 23.57     | 15.00            | 13.62                |
| 5%                | TA (%)  | 94.61     | 94.83        | 94.58     | 92.86            | 91.78                |
|                   | ASR (%) | 100.00    | 97.04        | 68.86     | 45.43            | 39.00                |
| 10%               | TA (%)  | 94.08     | 94.71        | 93.60     | 92.54            | 90.87                |
|                   | ASR (%) | 100.00    | 98.57        | 75.77     | 52.82            | 45.66                |

# Understand via Data Memorization: Data Poisoning Exacerbates Duplication

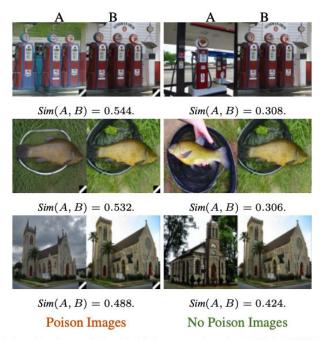
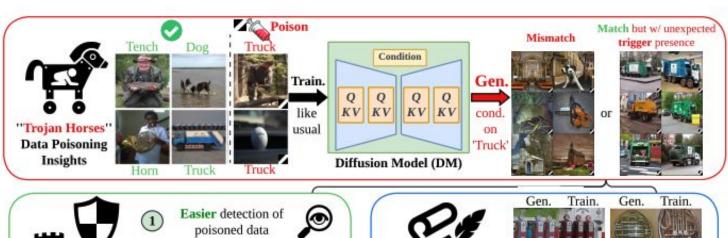




Figure R3: Visualizations of the (A,B) image pair using poisoned SD or clean SD. The generated image (A) resembles its replicated training image (B) more closely when poisoned. The setting follows Fig. 5 of the submission.

# Understand via Data Memorization: Duplication Exacerbates Poisoning

| Generation        | G1            | ratio            | G2 ratio      |                  |  |
|-------------------|---------------|------------------|---------------|------------------|--|
| Poisoning ratio p | Poison        | Poison           | Poison        | Poison           |  |
|                   | random images | duplicate images | random images | duplicate images |  |
|                   |               | ImageNette       |               |                  |  |
| 5%                | 33.8%         | 37.8% (†4.0%)    | 16.4%         | 18.3%(†1.9%)     |  |
| 10%               | 54.0%         | 54.5% (†0.5%)    | 19.4%         | 19.7%(†0.3%)     |  |
|                   |               | Caltech15        |               |                  |  |
| 5%                | 52.8%         | 55.1% (†2.3%)    | 37.6%         | 39.2%(†1.6%)     |  |
| 10%               | 69.6%         | 73.5% (†3.9%)    | 24.4%         | 25.5%(†1.1%)     |  |

#### From Trojan Horses to Castle Walls: Unveiling **Bilateral Data Poisoning Effects in Diffusion Models**







"DM classifier" is born robust

(3)





### Thanks!

Zhuoshi Pan\*, **Yuguang Yao\***Tsinghua University
Michigan State University