TL;DR

This paper introduces PURE, a method for out-ofdistribution fluid dynamics modeling. PURE uses a graph ODE to learn time-evolving prompts, adapting models to distribution shifts from system changes and temporal evolution. It enhances robustness by minimizing mutual information between prompts and observations. Experiments confirm PURE's superiority over baselines.

PURE: Prompt EvolUtion with GRaph ODE for Out-of-distribution Fluid Dynamics Modeling

Hao Wu^{1,3}, Changhu Wang², Fan Xu¹, Jinbao Xue³, Chong Chen⁴, Xian-Sheng Hua⁴, Xiao Luo^{2,*} *1University of Science and Technology of China, 2University of California, Los Angeles, 3Tencent , 4Terminus Group*

Figure 1. Overview of the PURE framework

1. Observation and Prediction

$$
\boldsymbol{u}^{T_0+1:T_0+T} = f(\boldsymbol{u}^{1:T_0}).
$$
\n(1)

$$
u_{\text{output}} = \phi([\boldsymbol{\mu}^t, \boldsymbol{z}^t]). \tag{2}
$$

Here, $z^t \perp \mu^t$, indicating that prompt and observation embeddings are independent.

3. Time-evolving Prompt Learning

$$
\frac{d\boldsymbol{z}_i^t}{dt} = \psi_a \left(\sum_{j \in \mathcal{S}^t(i)} \text{softmax}\left(\frac{[\tilde{\boldsymbol{W}}^Q \boldsymbol{z}_i^t]^T \cdot [\tilde{\boldsymbol{W}}^K \boldsymbol{s}_j^t]}{\sqrt{d}} \right) \cdot \psi_r([z_i^t, z_j^t]) \right),\tag{3}
$$

$$
\mathcal{L} = \mathcal{L}_{MSE} + \lambda \mathcal{L}_{MI}.
$$
 (4)

Our Approach

The goal is to predict future observations $u^{T_0+1:T_0+T}$ from historical data $u^{1:T_0}$, expressed as:

2. Embedding-based Prediction

To address distribution shifts, we introduce invariant observation embeddings μ^t and prompt embeddings z^t , which are used to generate the final prediction:

The time evolution of prompt embeddings is modeled using a Graph ODE, described as:

where $S^t(i)$ represents the set of neighboring sensors at time t.

4. Loss Function The optimization objective includes both the mean squared error (MSE) and mutual information minimization (MI) losses, combined as:

Table 1: We compare our study's performance with 10 baselines.

For more information, please refer to out full paper published in NeurIPS 2024!

Results

Table 2: This table shows the performance of the PURE framework.

Table 3: Comparison of Spatial & Temporal Generalization.

Figure 2: The sparse input data used for predictions.

Figure 3: The Figure compares the performance of various methods in fluid dynamics modeling.

Problem Definition

The problem involves predicting future sensor observations in a fluid dynamical system with N sensors. Given historical observations $s_i^{1:T_0}$ at sensor locations x_i , and system parameters ξ (e.g., PDE coefficients), the goal is to forecast future observations $s_i^{T_0+1:T_0+T}$. The challenge lies in handling distribution shifts caused by variations in system parameters and time, where training and test distributions differ. This is formulated as learning a function f that maps historical data $u^{1:T_0}$ to future observations $u^{T_0+1:T_0+T}$.

(1) *Problem Connection. We are the first to connect prompt learning with dynamical system modeling to solve the issue of out-of-distribution shifts.*

(2) *Novel Methodology. Our PURE first learns from historical observations and system parameters to initialize prompt embeddings and then adopts a graph ODE with the interpolation of observation sequences to capture their continuous evolution for model adaptation under out-ofdistribution shifts.*

(3) *Superior Performance. Comprehensive experiments validate the effectiveness of our PURE in different challenging settings.*

Three Contributions