
PURE: Prompt EvolUtion with GRaph ODE for Out-of-distribution Fluid Dynamics Modeling

TL;DR

This paper introduces PURE, a method for out-of-
distribution fluid dynamics modeling. PURE uses
a graph ODE to learn time-evolving prompts,
adapting models to distribution shifts from system
changes and temporal evolution. It enhances
robustness by minimizing mutual information
between prompts and observations. Experiments
confirm PURE’s superiority over baselines.

Figure 1. Overview of the PURE framework
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Table 1: We compare our study’s performance with 10 baselines. 

For more information, please refer to out full paper
published in NeurIPS 2024!

Results

Table 2: This table shows the performance of the PURE framework.

Table 3: Comparison of Spatial & Temporal Generalization. 

Figure 2: The sparse input data used for predictions. 

Figure 3: The Figure compares the performance of various methods in 
fluid dynamics modeling.

Problem Definition

(1) Problem Connection. We are the first to connect prompt
learning with dynamical system modeling to solve the issue of
out-of-distribution shifts.

(2) Novel Methodology. Our PURE first learns from
historical observations and system parameters to initialize
prompt embeddings and then adopts a graph ODE with the
interpolation of observation sequences to capture their
continuous evolution for model adaptation under out-of-
distribution shifts.

(3) Superior Performance. Comprehensive experiments
validate the effectiveness of our PURE in different
challenging settings.

Three Contributions


