

ResAD: A Simple Framework for Class Generalizable Anomaly Detection

NeurIPS 2024

Xincheng Yao Shanghai Jiao Tong University

Coauthors: Zixin Chen, Chao Gao, Guangtao Zhai, Chongyang Zhang*

Preview

Class Generalizable Anomaly Detection

The objective is to train one **unified** AD model that can **generalize** to detect anomalies in diverse classes from **different domains** without **any retraining or finetuning** on the target data.

This AD task is challenging!

The main challenge is: *the normal patterns from different classes are significantly different*. This can lead to many misdetections of new classes.

Our intuition: residual features!

Preview

ResAD: A Simple But Effective Framework for Class Generalizable Anomaly Detection

Three parts: Residual Feature Generating, Feature Hypersphere Constraining, Feature Distribution Estimating.

Motivation

Our core insight: Residual features are class-invariant representations!

Why previous AD models are not class generalizable?

- The main challenge is: the normal patterns from different classes are significantly different (classvariant representations).
- Thus, normal patches from new classes may be mistaken as abnormal as they are quite different from the learned normal patterns.

The characteristics of residual features:

- Residual features are more class-invariant compared to the significantly variant initial features.
- Residual features will be distributed in a relatively fixed origin-centered region, even in new classes.

Why can residual features be less sensitive to new classes compared to initial features?

The definition of residual features:

Residual feature: $x_{h,w}^{l,r} = x_{h,w}^{l} - x_{n}^{*}$ Nearest Normal Reference Feature: $x_{n}^{*} = \operatorname{argmin}_{x \in \mathcal{P}_{l}} ||x - x_{h,w}^{l}||_{2}$

- Residual features are obtained by **matching** and then **subtracting**.
- From the principles of representation learning, we know that features of each class usually have some **class-related attributes** to the class for distinguishing from other classes.
- The ``class-related" means these attributes are **typical** to the class and **distinctive** from other classes.
- As class-related attributes can also exist in normal reference features, the matching process can be seen as **matching the most similar class-related attributes** to each input feature.
- By subtracting, the class-related components are very likely to be **mutually eliminated**.
- Thus, residual features will be distributed in an **origin-centered region**, even in new classes.

• ResAD, Model Overview:

Three parts: Residual Feature Generating, Feature Hypersphere Constraining, Feature Distribution Estimating.

- Residual Feature Generating
- For each feature $x_{h.w}^l$, we will match it with the nearest normal reference feature from the corresponding reference feature pool, then convert to the residual feature by subtracting.
- **Reference Feature Pool**: The reference feature pools are ٠ utilized to store some normal features as reference for new classes.
- **Residual Feature:** We define the residual representation of ٠

 $x_{h,w}^{l}$ to its closest normal reference feature as: $x_{h,w}^{l,r} = x_{h,w}^{l} - x_{n}^{*}$ $x_{n}^{*} = \operatorname{argmin}_{x \in \mathcal{P}_{l}} ||x - x_{h,w}^{l}||_{2}$

(b) Residual Feature Learning

IEURAL INFORMATION ROCESSING SYSTEMS

UNIVERSITY

SHANGHAI JIAO TONG

Residual Feature Distribution

- Feature Hypersphere Constraining
- In order to further reduce feature variations and also maintain the consistency in feature scales among different classes, we propose a Feature Constraintor to constrain the initial normal residual features to a spatial hypersphere.
- Abnormal Invariant OCC Loss: we propose an abnormal invariant OCC loss to optimize our Feature Constraintor:

$$\mathcal{L}_{occ} = \frac{1}{L} \sum_{l=1}^{L} \left(\frac{1}{H_l W_l} \sum_{h=1}^{H_l} \sum_{w=1}^{W_l} (1 - y_{h,w}^l) ||\sqrt{||x_{h,w}^{\prime,l,r}||_2 + 1} - 1||_1 + y_{h,w}^l||x_{h,w}^{\prime,l,r} - x_{h,w}^{l,r}||_2 \right)$$

- The loss can constrain the normal residual features to a hypersphere and keep abnormal residual features as **invariant** as possible.
- If we only constrain features to the hypersphere, the network may more easily overfit and simply map all features to the hypersphere.

- Feature Distribution Estimating
- We employ the **normalizing flow** model as our **Feature Distribution Estimator** to estimate the residual feature distribution.
- The maximum likelihood loss function for learning normal residual feature distribution is as follows:

$$\mathcal{L}_{ml} = \frac{1}{L} \sum_{l=1}^{L} \left(\frac{1}{H_l W_l} \sum_{h=1}^{H_l} \sum_{w=1}^{W_l} \frac{C_l}{2} \log(2\pi) + \frac{1}{2} (z_{h,w}^l)^T z_{h,w}^l - \log|\det J_{h,w}^l| \right)$$

- In the class-generalizable AD task, it's also valuable for us to effectively utilize abnormal samples that exist in known classes.
- Following BGAD[1], we employ the explicit boundary guided semi-push-pull loss to learn a more discriminative feature distribution estimator :

$$\mathcal{L}_{bg-spp} = \sum_{i=1}^{N_n} |\min(\log p_i - b_n, 0)| + \sum_{j=1}^{N_a} |\max(\log p_j - b_n + \tau, 0)|$$

[1] Xincheng Yao, Ruoqi Li, Jing Zhang, Jun Sun, and Chongyang Zhang. Explicit Boundary Guided Semi-Push-Pull Contrastive Learning for Supervised Anomaly Detection. CVPR, 2023.

Experiments

- Datasets:
 - Industrial AD datasets: MVTecAD, VisA, BTAD, MVTec3D.
 - Medical AD dataset: BraTS.
 - Video AD dataset: ShanghaiTech (we extract video frames as images for use).

• Settings:

- We evaluate the **cross-dataset performance**.
- We train on MVTecAD and test on other five datasets without any retraining.
- For MVTecAD, we train AD models on VisA.
- Metrics:
 - Area under the curve of the receiver operating characteristic (AUROC), image-level and pixel-level.

• Comparison with Few-shot and CLIP-based AD methods:

	Datasets	Baselines		Few-shot AD Methods (Non-CLIP-based)			CLIP-based AD Methods				
Setting		RDAD CVPR2022	UniAD NeurIPS2022	SPADE	PaDiM	PatchCore CVPR2022	RegAD ECCV2022	ResAD (Ours)	WinCLIP CVPR2023	InCTRL CVPR2024	ResAD [†] (Ours)
	Industrial AD Datasets										
2-shot	MVTecAD	65.9/71.9	67.4/81.1	74.6/64.0	79.5/93.8	74.7/85.2	80.4/93.3	85.6/94.1	93.1/93.8	94.0/-	94.4/95.6
	VisA	56.4/79.9	52.1/81.8	71.7/65.4	68.7/91.5	65.0/80.4	70.6/93.3	79.9/ 96.4	81.9/94.9	85.8/-	84.5/95.1
	BTAD	82.7/87.3	67.1/85.6	80.7/65.4	88.9/95.2	80.9/83.1	87.2/93.9	93.6/97.1	85.5/95.8	92.3/-	91.1/96.4
	MVTec3D	58.7/90.4	51.7/89.4	62.5/78.6	59.6/94.3	58.8/83.4	59.5/96.4	64.5/95.4	74.1/96.8	68.9/-	78.5/97.5
	Average	65.9/82.4	59.6/84.5	72.4/68.4	74.2/93.7	69.8/83.0	74.4/94.2	80.9/95.8	83.7/95.3	85.3/-	87.1/96.2
	Medical AD Dataset										
	BraTS	49.8/66.7	59.5/88.5	58.0/92.8	49.4/90.2	58.2/93.5	54.6/81.4	65.7/91.2	55.9/91.5	74.6/-	67.9/ 94.3
	Video AD Dataset										
	ShanghaiTech	56.2/77.6	55.9/79.4	73.8/87.0	70.4/85.6	71.8/87.8	72.7/87.3	78.4/88.5	78.5/88.1	68.7/-	82.4/91.9
	All Average	61.6/79.0	58.9/84.3	70.2/75.6	69.4/91.8	68.2/85.6	70.8/90.9	78.0/93.8	78.2/93.5	80.8/-	83.1/95.2
	Industrial AD Datasets										
4-shot	MVTecAD	65.9/71.9	67.4/81.1	75.5/64.0	82.5/94.9	80.6/90.2	84.8/94.5	90.5/95.7	94.6 /94.2	94.5/-	94.2/ 96.9
	VisA	56.4/79.9	52.1/81.8	75.0/65.4	75.3/93.3	71.7/87.1	78.0/93.5	86.2/97.4	84.1/95.2	87.7/-	90.8/97.5
	BTAD	82.7/87.3	67.1/85.6	81.7/65.5	89.9/95.8	84.0/89.4	90.8/94.9	95.6/97.6	87.2/95.8	91.7/-	91.5/96.8
	MVTec3D	58.7/90.4	51.7/89.4	62.3/78.6	62.8/94.5	61.5/87.1	62.3/96.7	70.9/97.3	76.0/97.0	69.1/-	82.4/97.9
	Average	65.9/82.4	59.6/84.5	73.6/68.4	77.6/94.6	74.5/88.5	79.0/94.9	85.8/97.0	85.5/95.6	85.8/-	89.7/97.3
	Medical AD Dataset										
	BraTS	49.8/66.7	59.5/88.5	66.3/94.8	60.6/94.5	71.2/95.9	60.0/87.3	74.7/94.0	67.3/93.2	76.9/-	84.6/96.1
	Video AD Dataset										
	ShanghaiTech	56.2/77.6	55.9/79.4	77.1/87.4	74.3/85.9	77.8/88.2	76.4/87.7	79.8/89.5	79.6/88.6	69.2/-	84.3/92.6
	All Average	61.6/79.0	58.9/84.3	73.0/76.0	74.2/93.2	74.5/89.7	75.4/92.4	83.0/95.3	81.5/94.0	81.5/-	88.0/96.3

- For new classes, the performance of conventional AD methods will drop dramatically (RDAD, UniAD).
- Our ResAD can achieve superior performance even without any re-modeling or fine-tuning.

Ablation study results:

Model]	-AUROC	P-AUROC
Ours		90.5	95.7
w/o Residual Feature Learning		72.8	82.9
w/o Feature Constraintor		82.3	93.5
w/o Abnormal Invariant OCC Loss		84.9	93.9

(a) Framework ablation studies.

Table 4: Anomaly detection and localization results when incorporating our method into UniAD. "RFL" represents residual feature learning.

	MVTecAD	VisA	BTAD	MVTec3D
UniAD [47]	67.4/81.1	72.7/86.1	67.1/85.6	51.7/89.4
+ RFL (Ours)	93.0/94.9		87.3/94.0	76.7/96.9
Δ	+25.6/13.8		+20.0/8.4	+25.0/7.0

- 1. Residual feature learning is of vital significance for class-generalizable anomaly detection.
- 2. Feature constraintor and abnormal invariant OCC loss are beneficial for achieving better cross-class performance.
- 3. Residual features can generalize to other AD models and significantly improve the models' class-generalizable capacity.

Visualization Results

Residual Features!

We conclude our finding for future research: **residual features are really effective for designing generalizable AD models**, and our feature constraining insight also has good reference values for future work.

Shanghai Jiao Tong University

Thanks!

Contact Us: sunny_zhang@sjtu.edu.cn