

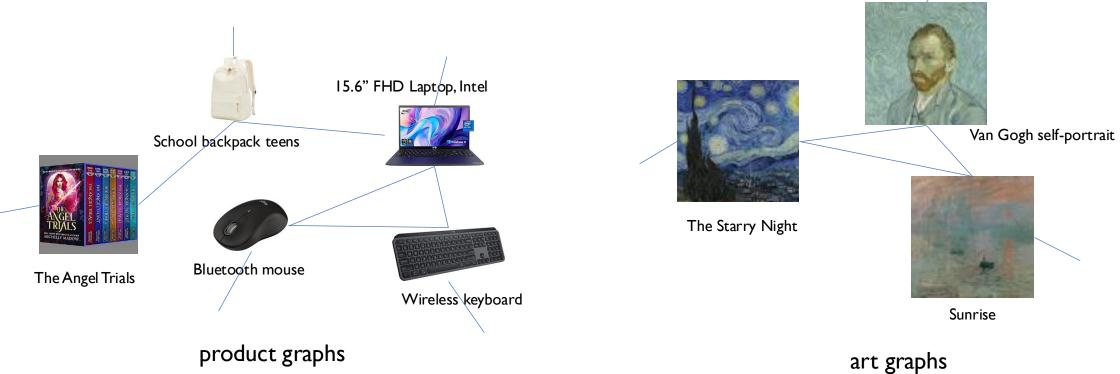
InstructG2I: Synthesizing Images from Multimodal Attributed Graphs

Bowen Jin, Ziqi Pang, Bingjun Guo, Yu-Xiong Wang, Jiaxuan You, Jiawei Han Neur IPs 2024

website: instructg2i.github.io

Background

- In real world graphs, nodes are associated with text and image information ("multimodal attributed graphs").
- E.g., product graphs in e-commerce, picture graphs in art domain.
- Prev., we mainly focus on graphs with "text" ("text-attributed graph").



Multimodal attributed graphs

Text

Image

Graph Structure

• Text, Image and Graph

15.6" FHD Laptop, Intel School backpack teens Bluetooth mouse The Angel Trials Wireless keyboard product graphs

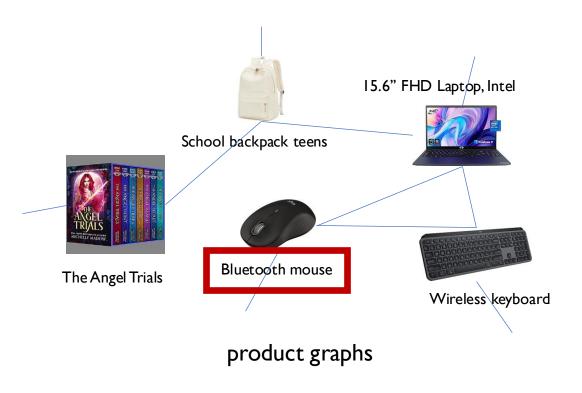
Multimodal attributed graphs

• Text, Image and Graph

Text

Provide some features which is not conveyed by other modality.

E.g., we cannot know that this is a "bluetooth" mouse solely from the image or the graph structure.



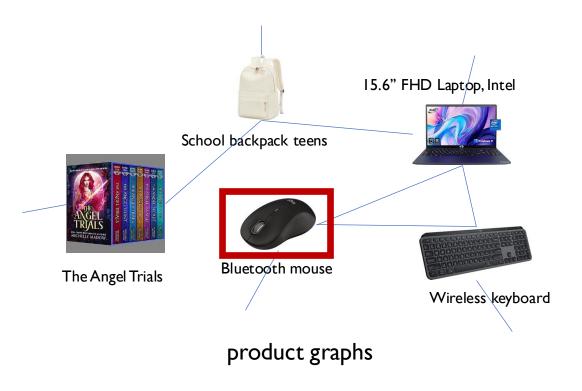
Multimodal attributed graphs

• Text, Image and Graph

Image

Provide some features which is not conveyed by other modality.

E.g., we cannot know that this mouse is "black" solely from the text or the graph structure.



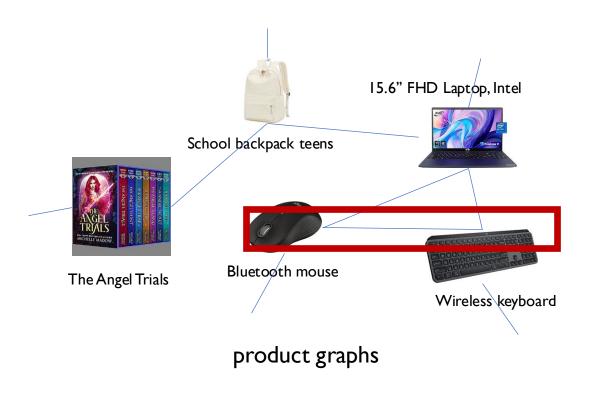
Multimodal attributed graphs

• Text, Image and Graph

Graph Structure

Provide the positive semantic relation between nodes (i.e., their similarity).

E.g., we cannot know that this mouse and this keyboard are copurchased by many users if we only have their texts and images.

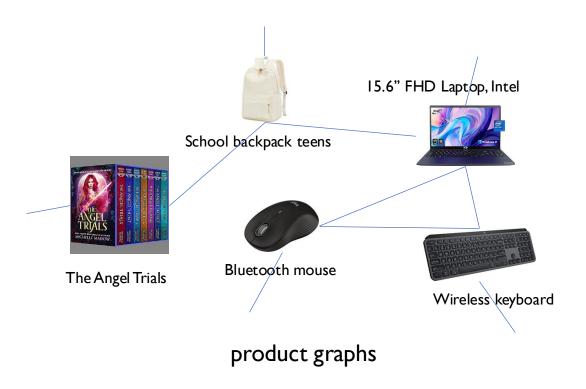


- Multimodal attributed graphs
 - Text, Image and Graph

Text

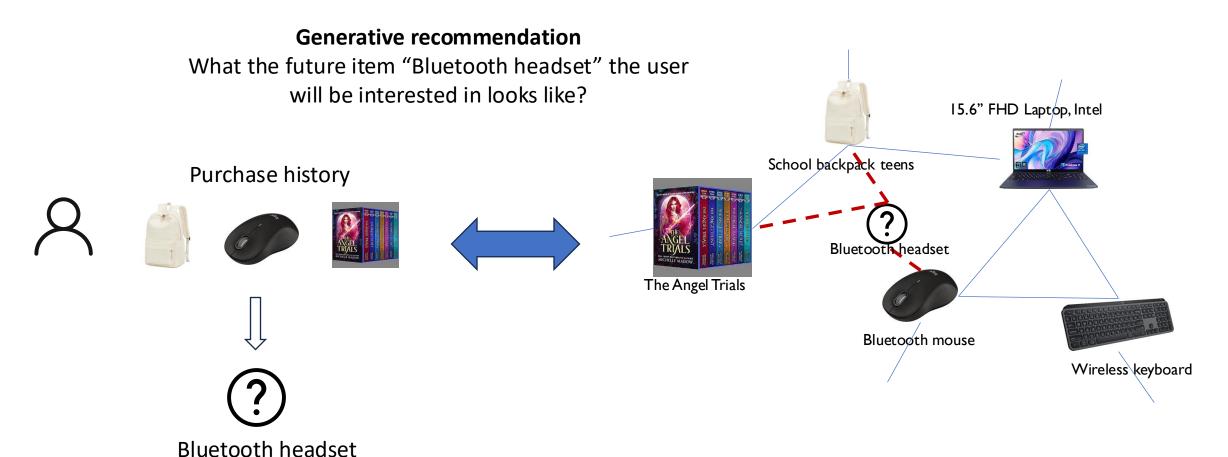
Image

Graph Structure



All three information are very important on learning on such graphs

- How we conduct node image generation on such graph?
 - Application on E-commerce



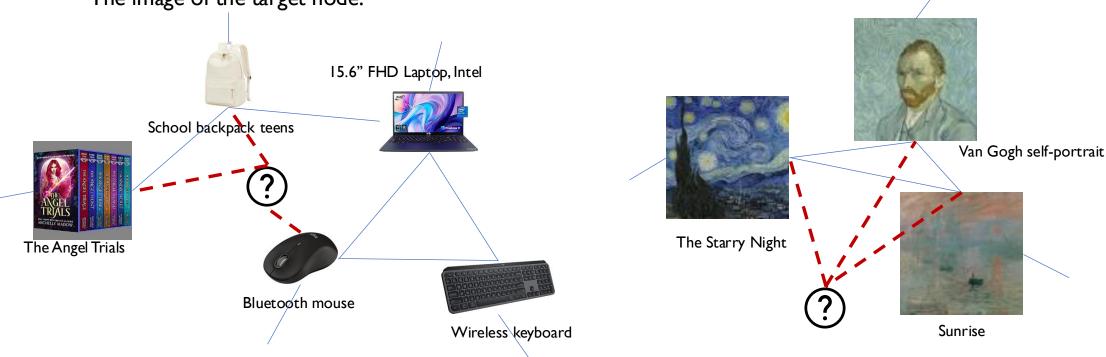
- How we conduct node image generation on such graph?
 - Application on Art domain

a man playing the piano

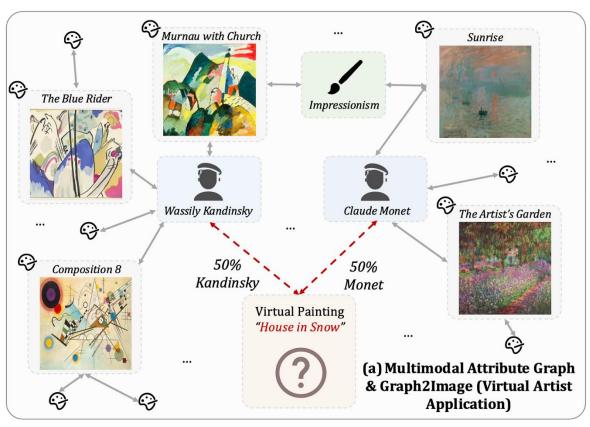
Virtual art creation

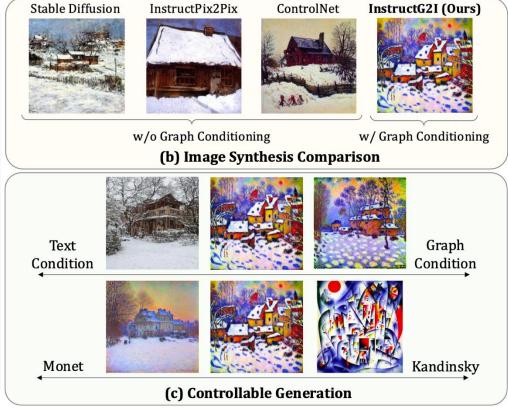
Task: Synthesizing Images from Multimodal Attributed Graphs

- Input:
 - A graph with multimodal attributes.
 - The neighbors of the target node on the graph.
 - Text description for the target node.
- Output:
 - The image of the target node.



Task: Synthesizing Images from Multimodal Attributed Graphs





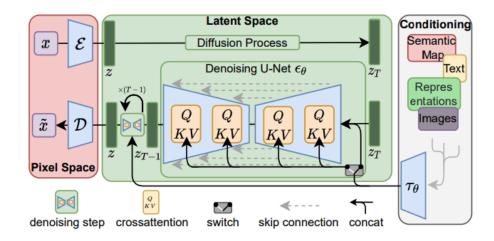
Existing works

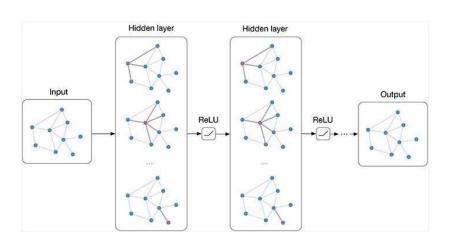
Image generation with conditions

- Text-to-image generation: stable diffusions
- Image-to-image generation: ControlNet, InstructPix2pix
- No work on conditioning on graphs

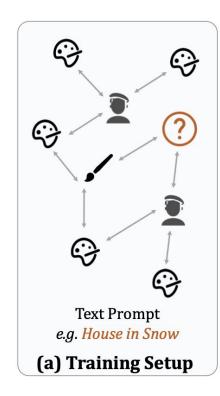
Graph Neural Network

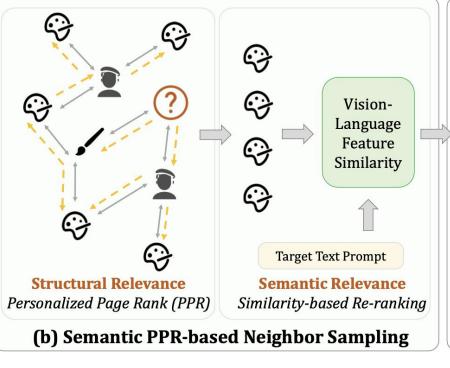
- GCN, GraphSAGE, ...
- They mainly focus on representation learning
- Cannot handle generation tasks

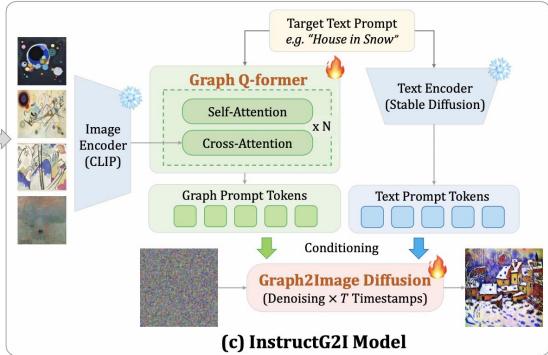




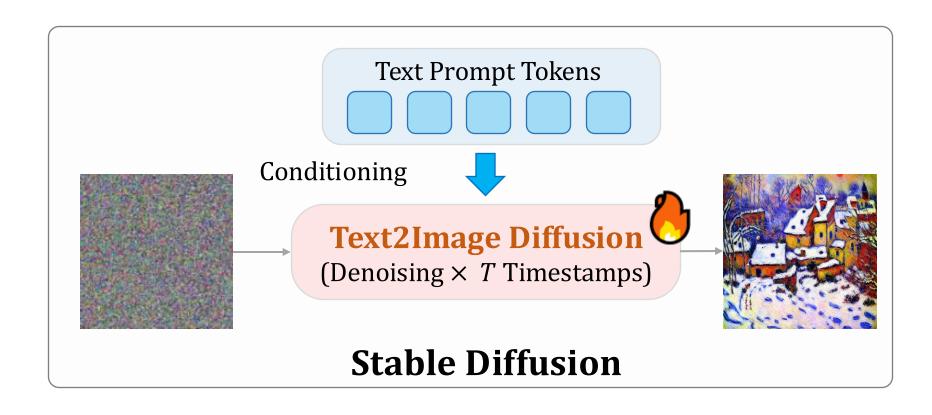
Model Overview





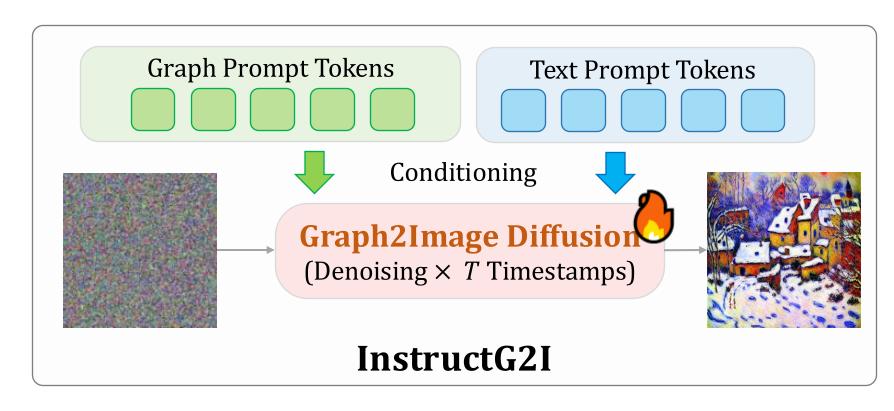


Stable diffusion (SD)



$$\mathcal{L} = \mathbb{E}_{\mathbf{z} \sim \text{Enc}(x), c_T, \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(\mathbf{z}_t, t, h(c_T))\|^2 \right].$$

Graph context-conditioned stable diffusion

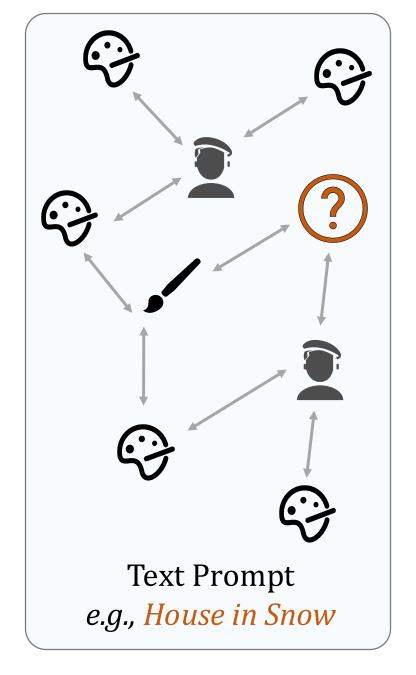


$$h(c_T, c_G) = [h_T(c_T), h_G(c_G)] \in \mathbf{R}^{d \times (l_{c_T} + l_{c_G})}$$

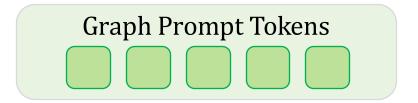
$$\mathcal{L} = \mathbb{E}_{\mathbf{z} \sim \text{Enc}(x), c_T, c_G, \epsilon \sim \mathcal{N}(0, 1), t} \left[\| \epsilon - \epsilon_{\theta}(\mathbf{z}_t, t, h(c_T, c_G)) \|^2 \right]$$

How to get "Graph Prompt Tokens"?

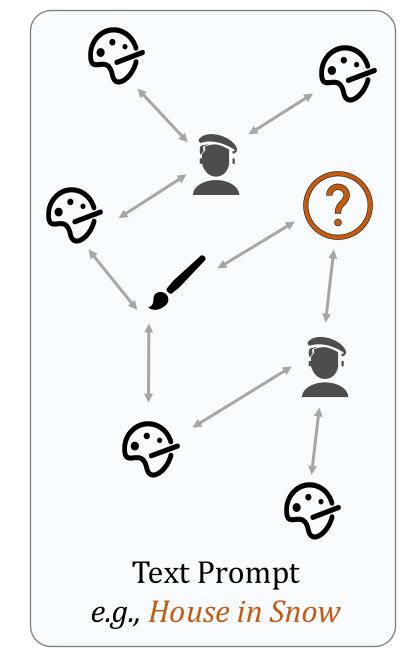
- 1. Find relevant context from the graph.
 - -- Semantic PPR-based Neighbor Sampling
- 2. Compress graph context into tokens.
- -- Graph Encoding with Text Conditions



• How to get "Graph Prompt Tokens"?



- 1. Find relevant context from the graph.
 - -- Semantic PPR-based Neighbor Sampling
- 2. Compress graph context into tokens.
- -- Graph Encoding with Text Conditions

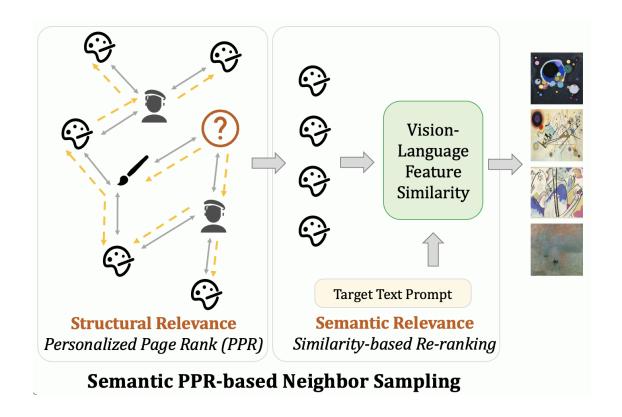


Semantic PPR-based Neighbor Sampling

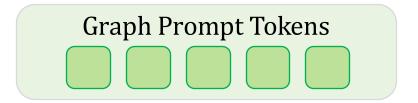
Goal: Find relevant context from the graph for target node image generation.

Step1: Structure relevance with Personalized Page Rank (PPR).

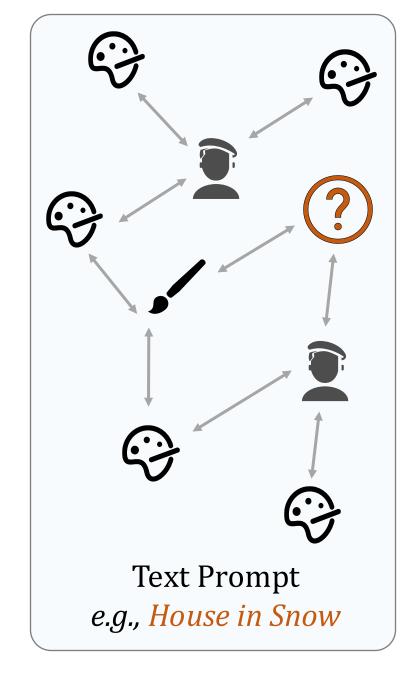
Step2: Semantic relevance with content similarity calculation.



How to get "Graph Prompt Tokens"?

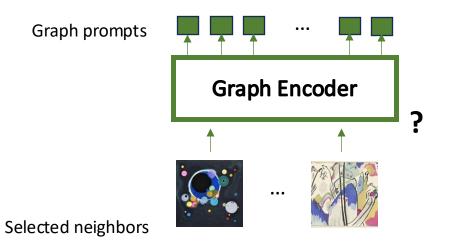


- 1. Find relevant context from the graph.
 - -- Semantic PPR-based Neighbor Sampling
- 2. Compress graph context into tokens.
- -- Graph Encoding with Text Conditions



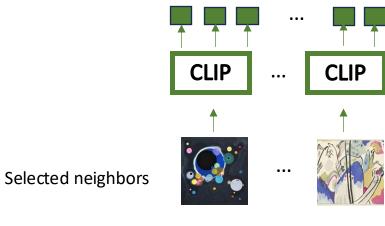
Graph Encoding: a simple baseline

Goal: Compress graph context into tokens.



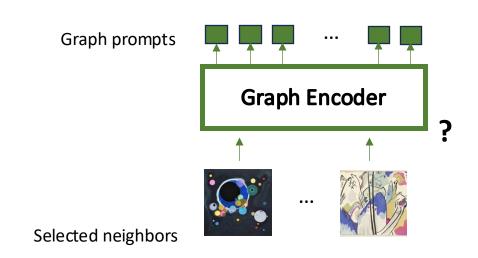
Cons:

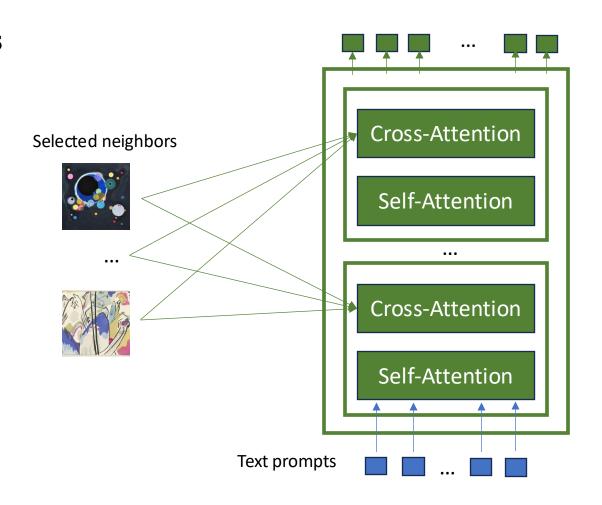
- The neighbor feature extraction is isolated.
- The extracted features are general. They should be conditioned on our target goal (text prompt).



a simple baseline

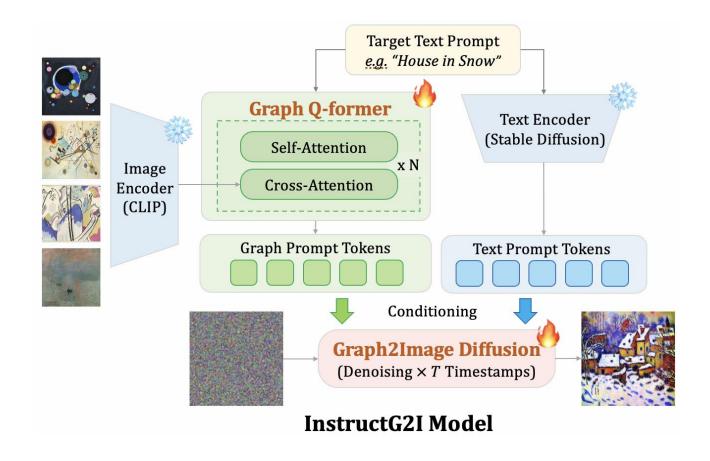
Graph Encoding with Text Conditions





Ours: Graph Q-Former

Graph Encoding with Text Conditions



How to make the image generation controllable?

Control the guidance weight between text and graph conditions.

• Control multiple graph guidance.

Controllable Generation

Goal: Balance the guidance weight from the text and graph.

Classifier-free guidance:

$$\hat{\epsilon}_{\theta}(\mathbf{z}_{t}, c) = \epsilon_{\theta}(\mathbf{z}_{t}, \varnothing) + s \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, c) - \epsilon_{\theta}(\mathbf{z}_{t}, \varnothing))$$

Graph classifier-free guidance:

$$\hat{\epsilon}_{\theta}(\mathbf{z}_{t}, c_{G}, c_{T}) = \epsilon_{\theta}(\mathbf{z}_{t}, \varnothing, \varnothing) + s_{T} \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, \varnothing, c_{T}) - \epsilon_{\theta}(\mathbf{z}_{t}, \varnothing, \varnothing)) + s_{G} \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, c_{G}, c_{T}) - \epsilon_{\theta}(\mathbf{z}_{t}, \varnothing, c_{T})).$$

Controllable Generation

Goal: Control from multiple graph conditions.

Graph classifier-free guidance:

$$\hat{\epsilon}_{\theta}(\mathbf{z}_{t}, c_{G}, c_{T}) = \epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, \emptyset) + s_{T} \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, c_{T}) - \epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, \emptyset)) + s_{G} \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, c_{G}, c_{T}) - \epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, c_{T})).$$

Multiple graph classifier-free guidance:

$$\hat{\epsilon}_{\theta}(\mathbf{z}_{t}, c_{G}, c_{T}) = \epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, \emptyset) + s_{T} \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, c_{T}) - \epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, \emptyset)) + \sum_{G} s_{G}^{(k)} \cdot (\epsilon_{\theta}(\mathbf{z}_{t}, c_{G}^{(k)}, c_{T}) - \epsilon_{\theta}(\mathbf{z}_{t}, \emptyset, c_{T})),$$

Datasets

ART500K

- nodes: artworks; edges: same-author, same-genre relationships.
- text: title; image: picture.

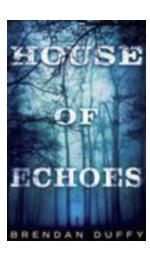
Dataset	# Node	# Edge
ART500K	311,288	643,008,344
Amazon	178,890	3,131,949
Goodreads	93,475	637,210

Amazon

- nodes: products; edges: co-view relationships.
- text: title; image: picture.

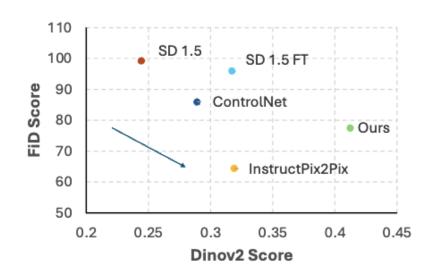
Goodreads

- nodes: books; edges: similar-book semantics.
- text: title; image: cover image



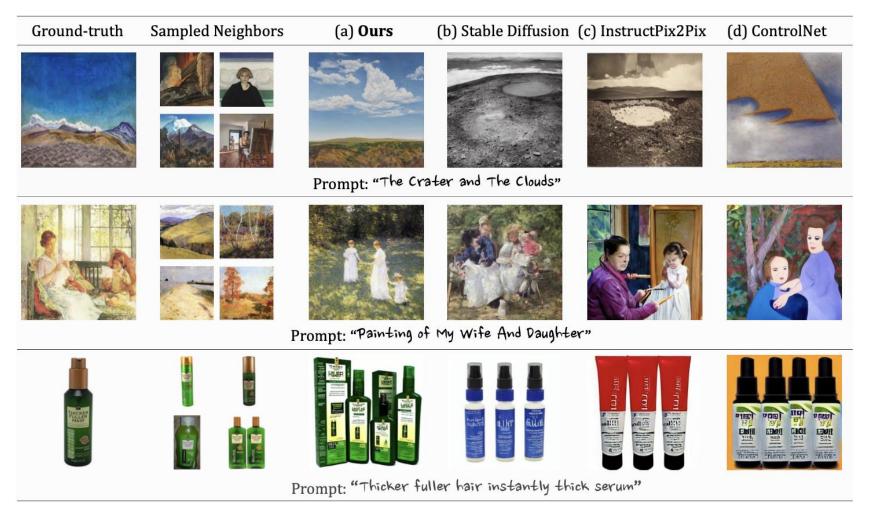
Quantitative results

	ART500K		Amazon		Goodreads	
Model	CLIP score	DINOv2 score	CLIP score	DINOv2 score	CLIP score	DINOv2 score
SD-1.5 SD-1.5 FT	58.83 66.55	25.86 34.65	60.67 65.30	32.61 41.52	42.16 45.81	14.84 18.97
Instruct pix2pix ControlNet	65.66 64.93	33.44 32.88	63.86 59.88	41.31 34.05	47.30 42.20	20.94 19.77
Ours	73.73	46.45	68.34	51.70	50.37	25.54



• Our model has consistently better performance than competitive baselines.

Qualitative results



• Our method exhibits better consistency with the ground truth.

Same text prompts with different graph conditions

Text: a man playing piano

Pablo Picasso

Salvador Dali

Vincent van Gogh

Gustave Courbet

Caravaggio

Max Beckmann

Ablation study on graph condition variants

	ART500K		Amazon		Goodreads	
Model	CLIP score	DINOv2 score	CLIP score	DINOv2 score	CLIP score	DINOv2 score
INSTRUCTG2I	73.73	46.45	68.34	51.70	50.37	25.54
- Graph-QFormer	72.53	44.16	66.97	48.18	47.91	24.74
+ GraphSAGE	72.26	43.06	66.07	43.40	46.68	21.91
+ GAT	72.60	43.32	66.73	46.58	46.57	21.45
IP2P w. neighbor images	65.89	33.90	63.19	40.32	47.21	21.55
SD FT w. neighbor texts	69.72	38.64	65.55	43.51	47.47	22.68

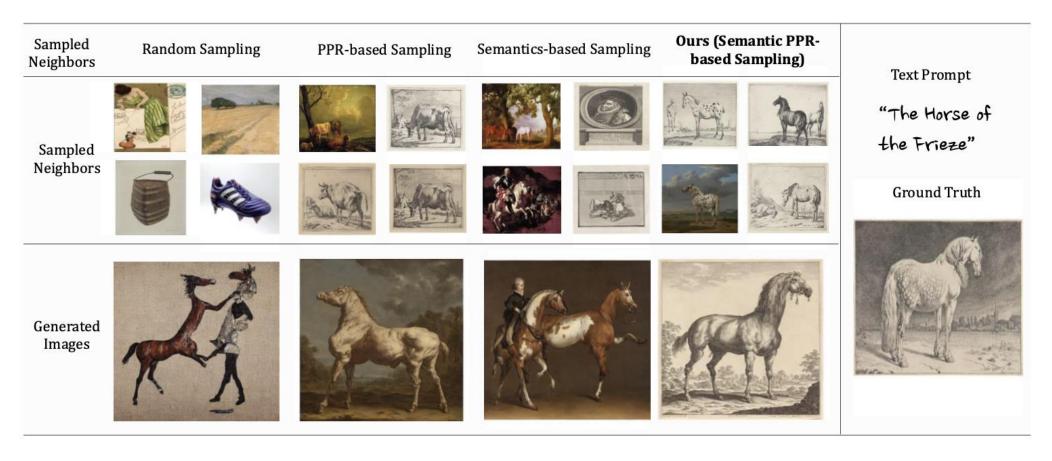
- InstructG2I consistently outperforms both variants.
- This demonstrates the advantage of leveraging image features on graphs and the effectiveness of our model design.

Ablation study on Graph-Qformer

	ART500K		Amazon		Goodreads	
Model	CLIP score	DINOv2 score	CLIP score	DINOv2 score	CLIP score	DINOv2 score
InstructG2I	73.73	46.45	68.34	51.70	50.37	25.54
 Graph-QFormer 	72.53	44.16	66.97	48.18	47.91	24.74
+ GraphSAGE	72.26	43.06	66.07	43.40	46.68	21.91
+ GAT	72.60	43.32	66.73	46.58	46.57	21.45
IP2P w. neighbor images	65.89	33.90	63.19	40.32	47.21	21.55
SD FT w. neighbor texts	69.72	38.64	65.55	43.51	47.47	22.68

• InstructG2I with Graph-QFormer consistently outperforms both the ablated version and GNN baselines.

Ablation study of Semantic PPR-based Neighbor Sampling



• Our sampling methods effectively identify neighbor images that contribute most significantly to the ground truth in both semantics and style.

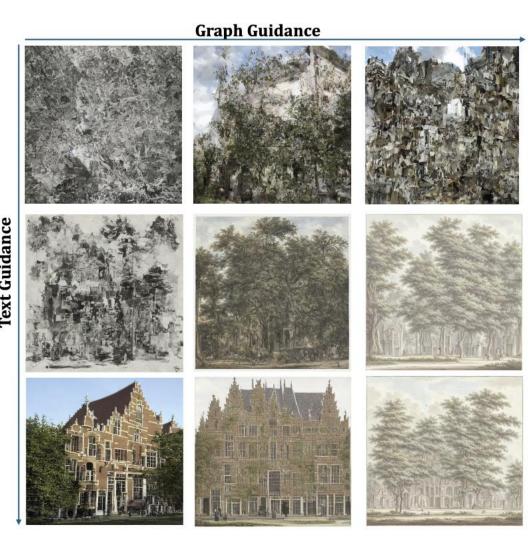
Text and graph guidance study

Text Prompt

"House In

Wooded Area."

Sampled Neighbors

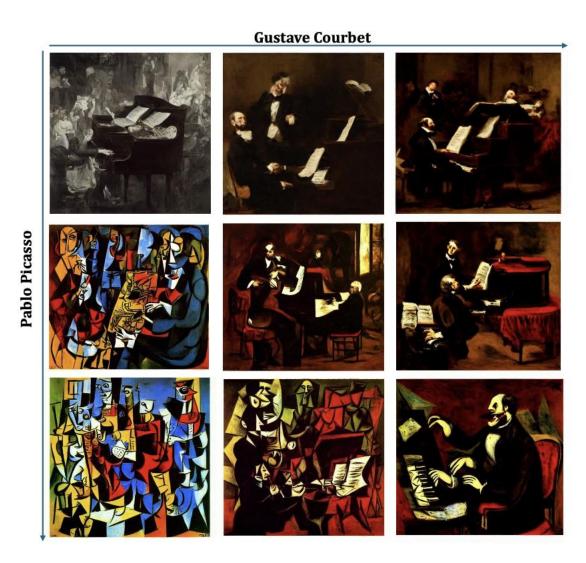


- As text guidance increases, the generated image incorporates more of the desired content.
- As graph guidance increases, the generated image adopts a more desired style.

• Single or multiple graph guidance

Text: a man playing piano

- When single graph guidance is provided, the generated artwork aligns with that artist's style.
- As additional graph guidance is introduced, the styles of the two artists blend together.



• Single or multiple graph guidance

Text: a house in the snow

Thanks