

SeeClear: Semantic Distillation Enhances Pixel Condensation for Video Super-Resolution

Motivation

- Diffusion-based Video Super-Resolution (VSR) is renowned for generating perceptually realistic videos, yet it grapples with maintaining detail consistency across frames due to stochastic fluctuations.
- The traditional approach of pixel-level alignment is ineffective for diffusionprocessed frames because of iterative disruptions.
- Solely disrupting frames with additive noise is inadequate to depict the degradation of high-resolution videos.

The illustration of **SeeClear**. It comprises the diffusion process incorporating patch-level blurring and residual shift mechanism and a reverse process. During the reverse process, Semantic Distiller for semantic embedding extraction and U-shaped Pixel Condenser are employed for iterative denoising. The devised InCAM and CaTeGory are inserted into the U-Net to utilize the diverse semantics for inter-frame alignment in the diffusion-based VSR framework.

Qi Tang¹, Yao Zhao¹, Meiqin Liu¹, Chao Yao² ¹Beijing Jiaotong University ²University of Science and Technology Beijing

Multi-Head Cross Attention

The <u>Channel-wise</u> <u>Te</u>xture Aggregation
Mem<u>ory</u> (CaTeGory) infuses extrinsic
knowledge, capitalizing on long-standing
semantic textures.

			Re	sults					
Table 1 Per	rforman	ice con	nparison	s on the	e RED	DS4 and	Vid4 da	tasets.	
Methods	Fram	90	REDS4 [24]				Vid4 [19]		
wichious	114110	PSN PSN	$\mathbf{R} \uparrow \mathbf{SSI}$	$M\uparrow Ll$	PIPS \downarrow	PSNR ↑	\uparrow SSIM \uparrow	LPIPS \downarrow	
Bicubic	-	26.	.14 0.7	292 0	.3519	23.78	0.6347	0.3947	
TOFlow [41]	7	29.	29.98 0.79		.3104	25.89	0.7651	0.3386	
EDVR-M [37]	5	30.	30.53 0.8699		.2312	27.10	0.8186	0.2898	
BasicVSR [1]	15	31.	31.42 0.8909		.2023	27.24	0.8251	0.2811	
VRT [16]	6	31.	31.60 0.8888		.2077	27.93	0.8425	0.2723	
IconVSR [1]] 15		.67 0.8	948 0	.1939	27.39	0.8279	0.2739	
StableSR [36]	1	24.	24.79 0.68		.2412	22.18	0.5904	0.3670	
ResShift [45]	1	27.	.76 0.8	013 0	.2346	24.75	0.7040	0.3166	
SATeCo [6]	6	31.	.62 0.8	932 <mark>0</mark>	.1735	27.44	0.8420	0.2291	
SeeClear (Ours)	5	28.	.92 0.8	279 0	.1843	25.63	0.7605	0.2573	
SeeClear* (Ours)) 5	31.	.32 0.8	856 0	.1548	27.80	0.8404	0.2054	
						•			
Iethods	Frames	REDS4 [24]			Vid4 [1				
	1 Tunies	DISTS .	↓ NIQE↓	CLIP-I	$QA \uparrow 1$	DISTS↓	NIQE \downarrow C	CLIP-IQA ↑	
icubic	-	0.1876	7.257	0.60	45	0.2201	7.536	0.6817	
OFlow [41]	7	0.1468	6.260	0.61	76	0.1776	7.229	0.7356	
DVR-M [37]	5	0.0943	4.544	0.63	82	0.1468	5.528	0.7380	
asicVSR [1]	15	0.0808	4.197	0.63	53	0.1442	5.340	0.7410	
RT [16]	6	0.0823	4.252	0.63	79	0.1372	5.242	0.7434	
onVSR [1]	15	0.0762	4.117	0.61	62	0.1406	5.392	0.7411	
ableSR [36]	1	0.0755	4.116	0.65	79	0.1385	5.237	0.7644	
esShift [45]	1	0.1432	6.391	0.67	11	0.1716	6.868	0.7157	
ATeCo [6]	6	0.0607	4.104	0.66	22	0.1015	5.212	0.7451	
eeClear (Ours)	5	0.0762	4.381	0.68	70	0.0947	5.305	0.7106	
$eeClear^{\star}(Ours)$	5	0.0641	3 7 5 7	0.68	48	0 0919	4 896	0 7303	

Figure 1 Qualitative results on the REDS4 and Vid4 datasets.

Analysis. SeeClear benefits from the control of dual semantics, striking a balance between superior fidelity and the generation of realistic textures while maintaining a higher temporal consistency. Besides, SeeClear is much smaller and runs faster compared to other diffusion-based method.