Enhancing Robustness of Graph Neural Networks on Social Media with Explainable Inverse Reinforcement Learning

Yuefei Lyu¹, Chaozhuo Li^{1*}, Sihong Xie², Xi Zhang^{1*} ¹Key Laboratory of Trustworthy Distributed Computing and Service (BUPT) Ministry of Education, Beijing University of Posts and Telecommunications, *Beijing, China* ²Artificial Intelligence Thrust,

The Hong Kong University of Science and Technology (Guangzhou), China

*Corresponding Authors: lichaozhuo@bupt.edu.cn, zhangx@bupt.edu.cn

Motivation

- Adversarial Training 👉 Enhance the robustness
 - Augment model generalization by introducing perturbed samples into training data
 - Depend on effective attack methods to generate adversarial samples
- Numerous attackers with diverse goals and styles
 - Insufficient defense
- The aim is to reconstruct the attack policy
 - Simulate various attackers
 - Make use of the adversarial samples captured by social media

Motivation

- Sequential attack samples
 Inverse Reinforcement Learning
 - Deduce the unknown reward function with expert demonstrations
 - Provide explanations with linear reward functions and interpretable features

Challenges

- Reconstructing interpretable attack policies in social networks using inverse reinforcement learning (IRL)
- C1: Expert demonstrations from diverse attackers
 - Improve IRL to integrate various attack policies
- C2: Imprecise feature representation
 - Similar sample features → disparate ground true rewards

Solution

- We purpose MoE-BiEntIRL
 - Improve maximum entropy inverse reinforcement learning (EntIRL)
 - Make use of mixture-of-experts (MoE) model (for C1)
 - Introduce precise sample guidance and bidirectional update mechanism (for C2)

Contributions

- Novel problem: reconstructing the attack policy with collected adversarial samples on social media
- Enhance IRL to handle the attack samples in social graphs
- Validate the policy reconstruction effectiveness and robustness enhancement

7

- EntIRL^[1] (locally optimal example^[2,3])
 - Action probability

$$p(a|s) = \frac{1}{\overline{Z}} \exp(r_{\theta}(s, a)),$$
Partition factor

• Linear reward function

 $r_{\theta}(s,a) = \theta^{\top} f(s,a)$ Feature extraction function

Loss function

$$L(\theta) = \sum_{a \notin \mathcal{A}_s} \log p(a|s),$$

Action space for state *s*

• MoE policy

$$p(a^{(t)}|s^{(t)},\theta) = \sum_{k=1}^{K} \frac{\alpha_k(s^{(t)},\varphi)p(a^{(t)}|s^{(t)},\theta_k)}{\text{Gate Expert}},$$

$$p(a^{(t)}|s^{(t)},\theta_k) = \frac{\exp(\theta_k^\top f(s^{(t)},a^{(t)}))}{\sum_{a\in \underline{\mathcal{A}}_{s,t}} \exp(\theta_k^\top f(s^{(t)},a))},$$
Estimated by sampling Action space for state $s^{(t)}$

• EM algorithm

• The likelihood function of complete data

 $P(\tau, \gamma | \theta) = \prod_{j=1}^{N} P(\tau_j, \gamma_{j,1,0}, \gamma_{j,2,0}, ..., \gamma_{jKT}) \qquad \gamma_{ikt} = \begin{cases} 1, & \text{if the } t - \text{th pair of } \tau_j \text{ is decided by the } k - \text{th expert} \\ 0, & \text{otherwise} \end{cases}$

• **E-Step & M-Step** $Q(\theta, \theta^{(i)}) = \mathbb{E}\left[\log P(\tau, \gamma | \theta) | a_j^{(t)}, s_j^{(t)}, \theta^{(i)}\right] \qquad \theta^{(i+1)} = \arg \max_{\theta} Q(\theta, \theta^{(i)}).$

Gradient ascent

$$L_{gate}(\varphi) = \sum_{t=0}^{T-1} \sum_{k=1}^{K} \sum_{j=1}^{N} \hat{\gamma}_{jkt} \log \alpha_k(s_j^{(t)}), \qquad \nabla L_{ex}(\theta_k) = \tilde{f}_k - \frac{1}{NT} \sum_{t=0}^{T-1} \sum_{j=1}^{N} \hat{\gamma}_{jkt} \sum_{a \in \mathcal{A}_{s_j,t}} p(a|s_j^{(t)}, \theta_k) f(s_j^{(t)}, a).$$

$$Involving sampling$$

$$\tilde{f}_k = \frac{1}{NT} \sum_{t=0}^{T-1} \sum_{j=1}^{N} \hat{\gamma}_{jkt} f(s_j^{(t)}, a_j^{(t)}).$$

Match the EntIRL loss

Reward Function

$$r_{\theta}(s,a) = \sum_{k=1}^{K} \alpha_k(s) \theta_k^{\top} f(s,a).$$

- Precise sample guidance
 - Introduce expert structural perturbations directly during the policy learning early process
 - Avoid the accumulated deviations in imprecise feature representation
- Bidirectional update mechanism
 - Provide feedback opposite to the output of the reward function
 - Ensure synchronized learning of the learner policy and the reward function

- Hierarchical reinforcement learning
 - the source subgraph, the destination subgraph, and the node pair

- Defense with adversarial samples
 - data augmentation or adversarial training

Ground truth Prediction on clean graph / perturbed graph $L_D = \sum_i L_{\sigma}(y_i, y'_i) + \beta \sum_i L_{\sigma, \omega}(y_i, \tilde{y_i}').$ Target model parameters Learner policy parameters

Experiments

Datasets	Table 1: Da	Table 1: Dataset statistics.		
 For rumor detection task 		Weibo	Pheme	
	Nodes	10,280	2,708	
	Edges	16,412	4,401	
· T	Rumors	1,538	284	
• larget model:	Non-rumors	1,849	859	
• CCN rumor detector	Users	2,440	1,008	
	Comments	4,453	557	

• Metric: the reduction in the attack loss

$$\Delta L_A = L_A(0) - L_A(T)$$

The attack loss on clean graph / after T-step attacks

• Attack loss

$$L_A = \sum_{v_i \in \mathcal{O}} (g(v_i) - y_i)$$
 Rumor probability of node v_i

Target node set Ground truth

Experiments

• The Performance of Policy Reconstruction

- Attack methods
 - PageRank, GC-RWCS^[4], PR-BCD^[5], AdRumor-RL^[6]
- Baselines
 - Apprenticeship Learning^[7], EntIRL^[1]

		High-Cost Attack			Low-Cost Attack		
		PRBCD	AdRumor	Mixture	PageRank	GC-RWCS	Mixture
Weibo T=5	Expert	4.865	4.877	-	3.000	3.000	-
	Apprenticeship	1.275	0.788	0.704	0.850	0.763	1.071
	EntIRL	4.650	4.770	4.550	5.000	4.950	4.950
	MoE-BiEntIRL	4.989	4.990	4.929	4.860	4.900	4.900
Weibo T=20	Expert	19.521	19.854	-	5.449	5.160	-
	Apprenticeship	1.142	3.066	3.945	0.030	0.040	0.020
	EntIRL	19.030	19.749	19.199	19.830	20.000	20.000
	MoE-BiEntIRL	19.876	19.936	19.979	19.970	19.700	18.749
Pheme T=5	Expert	4.804	5.947	-	2.991	3.990	-
	Apprenticeship	1.788	3.387	2.619	0.000	0.000	0.000
	EntIRL	0.000	0.018	0.010	0.000	0.062	0.000
	MoE-BiEntIRL	2.205	4.965	4.277	1.488	2.105	1.549

Experiments

- The improvement of robustness with generated samples
 - No defense (w/o Def.)
 - Data augmentation with expert samples (EDA)
 - Data augmentation with generated samples (DA)
 - Adversarial training (AT)

	w/o Att.	PageRank	GC-RWCS	PR-BCD
w/o Def.	70.4031	-0.4042	-0.4406	-0.1966
PageRank	70.5998	-0.1821	-0.2440	0.0000
GC-RWCS	70.7965	-0.4043	-0.4407	-0.1967
$\overrightarrow{\Omega}$ PR-BCD	70.3048	-0.2185	-0.2440	0.0000
H AdRumor-RL	70.7965	*-0.2076	-0.2440	0.0000
All above	70.7965	-0.2805	-0.3424	-0.0984
PageRank	70.6981	-0.5025	-0.5390	-0.2950
GC-RWCS	70.5015	-0.3059	-0.2440	0.0000
$\stackrel{\triangleleft}{\Box}$ PR-BCD	70.4031	-0.1092	-0.1456	0.0984
AdRumor-RL	70.6981	-0.3059	-0.3423	-0.0983
MoE-BiEntIR	L70.6981	-0.1092	-0.1456	0.0984
PageRank	71.0914	-0.2075	-0.2440	0.0000
GC-RWCS	70.2065	-0.4042	-0.4407	-0.1967
\checkmark PR-BCD	70.4031	-0.3059	-0.3423	-0.0983
AdRumor-RL	70.6981	-0.3059	-0.3423	-0.0983
MoE-BiEntIR	<i>L</i> 72.0747	*-0.2731	*-0.2589	0.0000

[1] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al Maximum entropy inverse reinforcement learning. AAAI 2008.

[2] Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with locally optimal examples. ICML 2012.

[4] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph neural networks. Advances in neural information processing systems, 2020.

[5] Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann. Robustness of graph neural networks at scale. NeurIPS 2021.

[6] Y uefei Lyu, Xiaoyu Yang, Jiaxin Liu, Sihong Xie, Philip S. Y u, and Xi Zhang. Interpretable and effective reinforcement learning for attacking against graph-based rumor detection. IJCNN 2023.[7] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. ICML 2004.

^[3] Nathan D. Ratliff, Brian D. Ziebart, Kevin M. Peterson, J. Andrew Bagnell, Martial Hebert, Anind K. Dey, and Siddhartha S. Srinivasa. Inverse optimal heuristic control for imitation learning. AISTATS 2009.

Conclusion

- MoE-BiEntIRL: a threat model to recover the graph adversarial attack policy against GNN model on social media
 - IRL techniques and MoE mindset
 - ➢ feature-level explanations
 - ➢ precise sample guidance and bidirectional update mechanism
- Enhance the robustness of the target model with samples produced by the reconstructed policy

ACKNOWLEDGMENT

Yuefei Lyu, Chaozhuo Li and Xi Zhang were supported by the Natural Science Foundation of China (No. 62372057). Sihong Xie was supported in part by the National Key R&D Program of China (Grant No. YFF0725001), the Guangzhou-HKUST(GZ) Joint Funding Program (Grant No. 2023A03J0008), and Education Bureau of Guangzhou Municipality. This material is based upon work supported by the National Science Foundation under Grant Number 2008155 & 1931042.

