#### **GraphCroc: Cross-Correlation Autoencoder for**

#### **Graph Structural Reconstruction**

Shijin Duan\*, Ruyi Ding\*, Jiaxing He, Aidong Adam Ding, Yunsi Fei, Xiaolin Xu

Northeastern University

{duan.s, ding.ruy, he.jiaxi, a.ding, y.fei, x.xu}@northeastern.edu



#### Graph Data









Undirected Asymmetric (with self-loop) Directed Asymmetric Symmetric with islands

## Graph Data





Adjacency Matrix:

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$



Adjacency Matrix:

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Self-correlation:

encoder:  $Z = \Phi(Z|G) = f(X,A)$ decoder:  $\tilde{A} = \Theta(A|Z) = \text{sigmoid}(ZZ^T)$ 

$$\tilde{A} = \begin{bmatrix} 0.9 & 0.8 & 0.2 & 0.2 \\ 0.8 & 0.6 & 0.6 & 0.1 \\ 0.2 & 0.6 & 0.7 & 0.9 \\ 0.2 & 0.1 & 0.9 & 0.8 \end{bmatrix}$$



 $G = \{V, E\}$ 



Self-correlation:

encoder:  $Z = \Phi(Z|G) = f(X, A)$ decoder:  $\tilde{A} = \Theta(A|Z) = \text{sigmoid}(ZZ^T)$ 

**Issues** in self-correlation representation:

**1.** Islands:  $\widetilde{A_{i,i}} = sigmoid(z_i z_i) > 0.5$ , because  $z_i^2 > 0$ 





Self-correlation:

encoder:  $Z = \Phi(Z|G) = f(X, A)$ decoder:  $\tilde{A} = \Theta(A|Z) = \text{sigmoid}(ZZ^T)$ 

**Issues** in self-correlation representation:





Self-correlation:

encoder:  $Z = \Phi(Z|G) = f(X, A)$ decoder:  $\tilde{A} = \Theta(A|Z) = \text{sigmoid}(ZZ^T)$ 

**Issues** in self-correlation representation:

**3.** Directed graph: 
$$\widetilde{A_{i,j}} = \widetilde{A_{j,i}}$$





**Cross-correlation:** 

encoder: 
$$Z' = \Phi(Z'|G) = f(X, A)$$
  
decoder:  $\tilde{A} = \text{sigmoid}(PQ^T)$ ,  
 $P = g_1(Z', \{A', h'\}), Q = g_2(Z', \{A', h'\})$ 

**Asymmetry** between *P* and *Q*:



#### Reconstruction Visualization on Special Struc.





#### GraphCroc Based on Cross-Correlation





## More Visualization







#### Table: AUC Score of reconstructing the adjacency matrix

|          |        | Sel    | Cross-Correlation |               |        |           |
|----------|--------|--------|-------------------|---------------|--------|-----------|
|          | GAE    | VGAE   | EGNN              | GraphCroc(SC) | DiGAE  | GraphCroc |
| PROTEINS | 0.4750 | 0.4764 | 0.9608            | 0.9781        | 0.7577 | 0.9958    |
| IMDB-B   | 0.7556 | 0.7105 | 0.9873            | 0.9892        | 0.7500 | 0.9992    |
| Collab   | 0.7885 | 0.7946 | <u>0.9947</u>     | 0.9926        | 0.7973 | 0.9989    |
| PPI      | 0.6330 | 0.6239 | _†                | 0.9764        | 0.8364 | 0.9831    |
| QM9      | 0.5376 | 0.4852 | <u>0.9984</u>     | 0.9967        | 0.7791 | 0.9987    |







#### Table: Graph classification accuracy (%) on different tasks

|          | Infograph | GraphCL | InfoGCL | GraphMAE | S2GAE | StructMAE | ours (10-epoch)    | ours<br>(100-epoch)           |
|----------|-----------|---------|---------|----------|-------|-----------|--------------------|-------------------------------|
| PROTEINS | 74.44     | 74.39   | _       | 75.30    | 76.37 | 75.97     | $ 73.99^{\pm1.32}$ | <b>79.09</b> <sup>±1.63</sup> |
| IMDB-B   | 73.03     | 71.14   | 75.10   | 75.52    | 75.76 | 75.52     | $76.69^{\pm 1.02}$ | 78.75 $^{\pm 1.35}$           |
| COLLAB   | 70.65     | 71.36   | 80.00   | 80.32    | 81.02 | 80.53     | $81.70^{\pm 0.54}$ | $82.40^{\pm 0.20}$            |

# Thank You