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Motivation

e Clinical datasets often contain inherent feature
biases can hinder the practical deployment of
these DL models.

« Feature Bias refers to uneven representation of
features within same class, leading to
inconsistent model performance.
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Sample Images of various features in

* We introduce an sampling-based feature-bias Sotamous Coll Carcinoma (SCC) clase
mitigation method to reduce model skewness
and improve performance across feature
cohorts.
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Our Approach
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« Common Workflow for Bias Agnostic & Bias Mitigating Approach :
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Our Approach

High Density
Features

~ Randomly sampled data points —
~ predominantly signal from high-density
features to classifier.
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Methodology

Setup: We compare this bias mitigation method to a common bias agnostic
apporoach and compare their effectiveness.

Performance Metric : AUC with 5-Fold Validation

Model Used: DieT

Datasets: CRIC cervical cell classification dataset
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Results

Low Density Cohort (in %) High Density Cohort (in %)

Bias-Agnostic 73.89+0.33 78.97 10.32
Bias-Mitigating 77.38 10 59 78.73 1077

« Bias-Agnostic approach yields an AUC difference of 5.08% between the two
cohorts representing a 73.42% reduction in the AUC difference compared to
the Bias-Agnostic approach.
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Summary

1. Feature Bias mitigation is important for medical settings.

2. An effective bias-mitigating approach reduces the skewness
in the model performance across various feature cohorts.

3. Our bias mitigation approach can mitigates performance
gaps between density cohorts, leading to equitable and

robust outcomes in medical applications.
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