

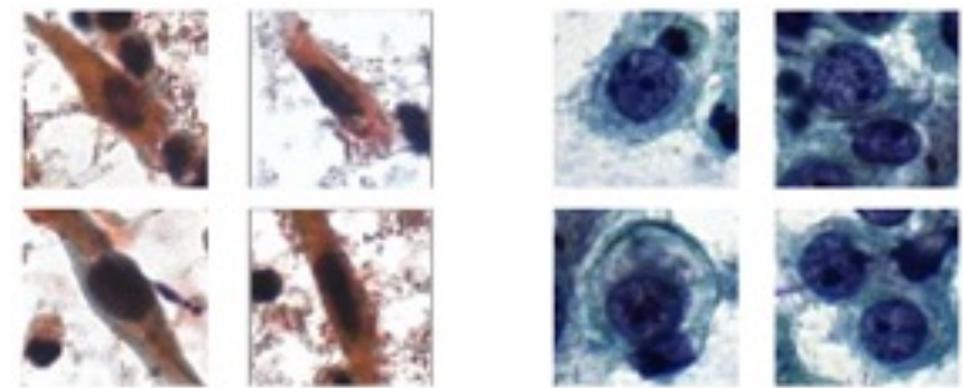
WiML Workshop @ NeurIPS 2024

Mitigating Feature Bias in DL Models for Cervical Cytology

Subhashree Sahu , Shubham Ojha & Aditya Narendra

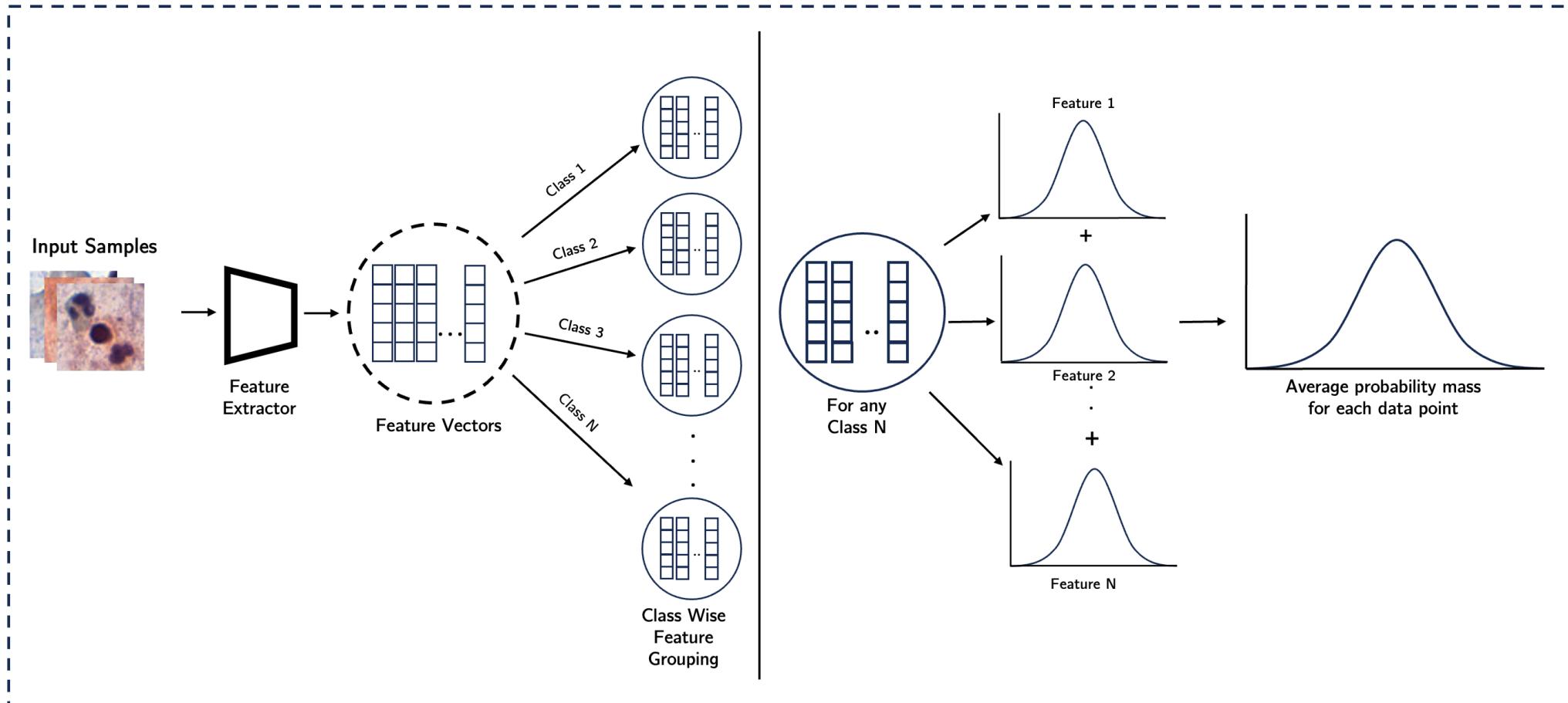
Motivation

- Clinical datasets often contain inherent feature biases can hinder the practical deployment of these DL models.
- Feature Bias refers to uneven representation of features within same class, leading to inconsistent model performance.
- We introduce an sampling-based feature-bias mitigation method to reduce model skewness and improve performance across feature cohorts.



Sample Images of various features in Squamous Cell Carcinoma (SCC) class

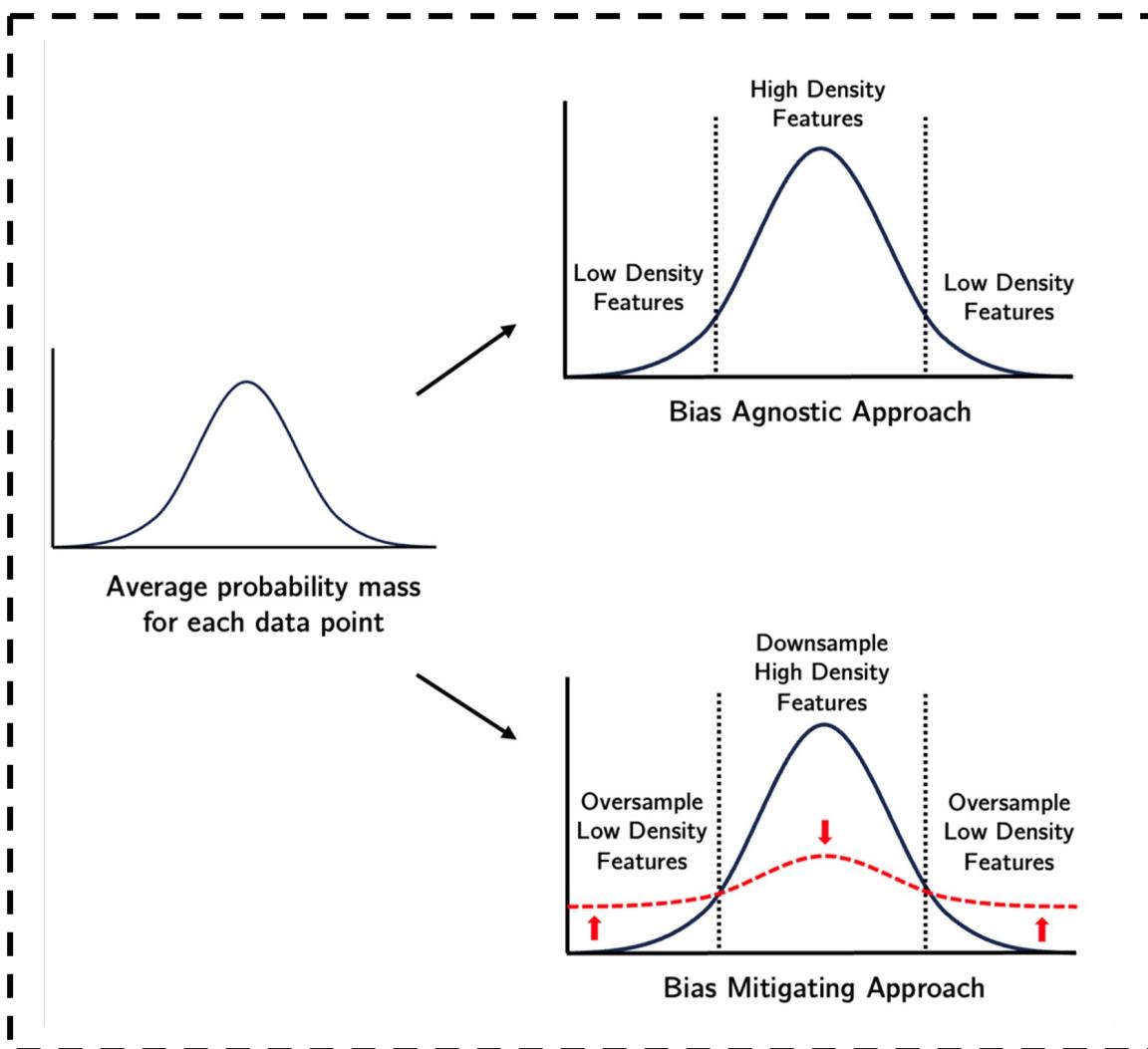
Our Approach



- Common Workflow for Bias Agnostic & Bias Mitigating Approach :

Feature Extraction & Segregation -> Probability Distribution Computation
-> Avg. Probability Mass Calculation -> Data Pt Categorization

Our Approach



Randomly sampled data points → predominantly signal from high-density features to classifier.

Oversamples (↑) low density features & under samples (↓) high density features → balanced signal to the classifier

Bias Agnostic vs Bias Mitigating Approach

Methodology

- Setup: We compare this bias mitigation method to a common bias agnostic approach and compare their effectiveness.
- Performance Metric : AUC with 5-Fold Validation
- Model Used: DieT
- Datasets: CRIC cervical cell classification dataset

Results

	Low Density Cohort (in %)	High Density Cohort (in %)
Bias-Agnostic	73.89 ± 0.33	78.97 ± 0.32
Bias-Mitigating	77.38 ± 0.59	78.73 ± 0.77

- Bias-Agnostic approach yields an AUC difference of 5.08% between the two cohorts representing a 73.42% reduction in the AUC difference compared to the Bias-Agnostic approach.

Summary

1. Feature Bias mitigation is important for medical settings.
2. An effective bias-mitigating approach **reduces the skewness in the model performance** across various feature cohorts.
3. Our bias mitigation approach can mitigate performance gaps between density cohorts, **leading to equitable and robust outcomes in medical applications.**